Answer:
No, the 50 ohm and 100 ohm resistor will not continue to operate.
Explanation:
A closed circuit is the circuit in which there is no break between the negative and the positive end of the battery.
When in this, combinational circuit the 80 ohm resistor fail then there will not any continue supply of current in the circuit due to the breakage because the electron will flow from negative end of the battery to positive end if their is no breaking in the circuit.
Therefore the 50 ohm and 100 ohm circuit will not continue to operate because of the breaking of the circuit and current will not flow.
Answer:
A. a set of mathematically topics that are relevant to introductory physics.
Explanation:
The physics primer is not defined as the online comprehensive mathematics textbooks. It is the set of topics of mathematics which gives students trouble and remember.
Therefore, it is defined as the process of physics problem solving. So, mathematically skills are covered in physics course as a primer related success.
Therefore, it is a set of topics of mathematics that are relevent to introductory physics.
Answer:
Answered
Explanation:
1 and 3 are necessary
Every bit of force applied to the bumper will be transmitted to the cart EXCEPT for the force needed to accelerate the bumper. This is the net force on the bumper.
If the bumper was heavy then a significant amount of force might be needed to accelerate the bumper so the amount transmitted to the cart would be substantially reduced.
If the net force on the bumper is small then the amount transmitted to the cart is almost the entire force applied.
Explanation:
Given that,
Force with which a child hits a ball is 350 N
Time of contact is 0.12 s
We need to find the impulse received by the ball. The impulse delivered is given by :

So, the impulse is 42 N-m..
We know that he change in momentum is also equal to the impulse delivered.
So, impulse = 42 N-m and change in momentum =42 N-m.
Given:
Ca = 3Cb (1)
where
Ca = heat capacity of object A
Cb = heat capacity f object B
Also,
Ta = 2Tb (2)
where
Ta = initial temperature of object A
Tb = initial temperature of object B.
Let
Tf = final equilibrium temperature of both objects,
Ma = mass of object A,
Mb = mass of object B.
Assuming that all heat exchange occurs exclusively between the two objects, then energy balance requires that
Ma*Ca*(Ta - Tf) = Mb*Cb*(Tf - Tb) (3)
Substitute (1) and (2) into (3).
Ma*(3Cb)*(2Tb - Tf) = Mb*Cb*(Tf - Tb)
3(Ma/Mb)*(2Tb - Tf) = Tf - Tb
Define k = Ma/Mb, the ratio f the masses.
Then
3k(2Tb - Tf) = Tf - Tb
Tf(1+3k) = Tb(1+6k)
Tf = [(1+6k)/(1+3k)]*Tb
Answer:

where