answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Sergio [31]
2 years ago
10

A soap bubble has a diameter of 4mm .Cakculate the pressure inside it if the atmospheric pressure outside is 10^5Nm^2 . The surf

ace tension of soap =2.8* 10^-2N/m
Physics
2 answers:
Len [333]2 years ago
6 0

Answer:

Explanation:

The formula for determining the pressure inside a soap bubble is expressed as

Pi - Po = 4T/r

Where

Pi represents the pressure inside the bubble.

Po represents the pressure outside the bubble or the atmospheric pressure.

T represents the surface tension.

r represents radius of the bubble.

From the information given,

Diameter of bubble = 4mm. Converting to meters, it becomes

4/1000 = 0.004m

Radius of bubble = 0.004/2 = 0.002m

T = 2.8 × 10^-2N/m

Po = 1 × 10^5Nm^-2

Therefore,

Pi - 10^5 = 4 × 2.8 × 10^ -2/0.004

Pi - 10^5 = 28

Pi = 28 + 1 × 10^5 = 100028Nm^-2

Kipish [7]2 years ago
3 0
Look it up it will give the right anwser
You might be interested in
A 4-lb ball b is traveling around in a circle of radius r1 = 3 ft with a speed (vb)1 = 6 ft>s. if the attached cord is pulled
Leya [2.2K]
Position #1:
radius, r₁ = 3 ft
Tangential speed, v₁ = 6 ft/s

By definition, the angular speed is
ω₁ = v₁/r₁ = (3 ft/s) / (3 ft) = 1 rad/s

Position #2:
Radius, r₂ = 2 ft

By definition, the moment of inertia in positions 1 and 2 are respectively
I₁ = (4 lb)*(3 ft)² = 36 lb-ft²
I₂ = (4 lb)*(2 ft)² = 16 lb-ft²

Because momentum is conserved,
I₁ω₁ = I₂ω₂
Therefore the angular velocity in position 2 is
ω₂ = (I₁/I₂)ω₁
      = (36/16)*1 = 2.25 rad/s
The tangential velocity in position 2 is
v₂ = r₂ω₂ = (2 ft)*(225 rad/s) = 4.5 ft/s

At each position, there is an outward centripetal force.
In position 1, the centripetal force is
F₁ = m*(v²/r₂) = (4)*(6²/3) = 48 lbf
In position 2, the centripetal force is
F₂ = (4)*(4.5²/2) = 40.5 lbf

The radius diminishes at a rate of 2 ft/s.
Therefore the force versus distance curve is as shown below.

The work done is the area under the curve, and it is
W = (1/2)*(48.0+40.5 ft)*(3-2 ft) = 44.25 ft-lb

Answer:  44.25 ft-lb


6 0
2 years ago
Which has a larger resistance a 60 w lightbulb or a 100 w lightbulb?
Anni [7]
100w bulb has a greater resistance according to p=vi and v=ir
4 0
2 years ago
At a location where the acceleration due to gravity is 9.807 m/s2, the atmospheric pressure is 9.891 × 104 Pa. A barometer at th
Otrada [13]

Answer:

8616.7468 \ kg/m^3

Explanation:

Pressure is measured is p=\rho gh here p is pressure \rho is density and h is height

We have given pressure p=9.891\times 10^4\ Pa acceleration due to gravity g=9.9870\ m/sec^2 height =1.163 m

\rho =\frac{p}{gh}=\frac{9.891\times 10^4}{9.870\times 1.163}=8616.7468 \ kg/m^3

5 0
2 years ago
Read 2 more answers
The drag force F on a boat varies jointly with the wet surface area A of the boat and the square of the speed s of the boat. A b
Advocard [28]

Answer:

Wet surfaces areaA=+25.3ft^2

Explanation:

Using F= K×A× S^2

Where F= drag force

A= surface area

S= speed

Given : F=996N S=20mph A= 83ft^2

K = F/AS^2=996/(83×20^2)

K= 996/33200 = 0.03

1215= (0.03)× A × 18^2

1215=9.7A

A=1215/9.7=125.3ft^2

7 0
2 years ago
A cliff diver running 3.60 m/s dives out horizontally from the edge of a vertical cliff and reaches the water below 2.00 s later
mart [117]

Explanation:

It is given that,

The horizontal speed of a cliff diver, v_x=3.6\ m/s

It reaches the water below 2.00 s later, t = 2 s

Let d_x is the distance where the diver hit the water. It can be calculated as follows :

d_x=v_x\times t\\\\=3.6\times 2\\\\=7.2\ m

Let d_y is the height of the cliff. It can be calculated using second equation of motion as follows :

d_y=u_yt+\dfrac{1}{2}gt^2\\\\d_y=\dfrac{1}{2}\times 9.8\times 2^2\\\\=19.6\ m

So, the cliff is 19.6 m high and it will hit the water at a distance of 19.6 m.

8 0
1 year ago
Other questions:
  • A system delivers 1275 j of heat while the surroundings perform 855 j of work on it. calculate ∆esys in j.
    8·1 answer
  • A 60 kg Gila monster on a merry-go-round is traveling in a circle with a radius of 3 m, rotating at a rate of 9 revolutions/minu
    9·1 answer
  • The path of a meteor passing Earth is affected by its gravitational force and falls to Earth's surface. Another meteor of the sa
    8·2 answers
  • A balloon was filled to a volume of 2.50 l when the temperature was 30.0∘c. What would the volume become if the temperature drop
    14·1 answer
  • Consider two slides, both of the same height. One is long and the other is short. From which slide will a child have a greater f
    12·1 answer
  • In what way have mass extinctions catalyzed evolutionary radiation? Mass extinction events cause mutations, increasing the genet
    11·1 answer
  • A person is pushing a fully loaded 21.60 kg wheelbarrow at constant velocity along a plank that makes an angle ????=20.0∘ with t
    12·1 answer
  • A car is traveling at 20.0 m/s on tires with a diameter of 70.0 cm. The car slows down to a rest after traveling 300.0 m. If the
    12·1 answer
  • A 90 kg man stands in a very strong wind moving at 17 m/s at torso height. As you know, he will need to lean in to the wind, and
    5·1 answer
  • What type of system would allow light and air to enter and exit?
    10·2 answers
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!