When wool is rubbed with a balloon, the wool is left with a positive charge as electrons have travelled from the wool to the balloon which means the balloon now has a negative charge.
Now that the balloon has a negative charge, you need to know:
The tissue paper originally contains electrons and protons
The fact that the balloon has a negative charge, it will ATTRACT protons because protons are POSITIVE and electrons are NEGATIVE.
So once they are attracted, they will move closer to one another.
Answer:
velocity = 472 m/s
velocity = 52.4 m/s
Explanation:
given data
steady rate = 0.750 m³/s
diameter = 4.50 cm
solution
we use here flow rate formula that is
flow rate = Area × velocity .............1
0.750 =
× (4.50×
)² × velocity
solve it we get
velocity = 472 m/s
and
when it 3 time diameter
put valuer in equation 1
0.750 =
× 3 × (4.50×
)² × velocity
velocity = 52.4 m/s
I assume the x-y axis are tilted such that the x-axis is parallel to the surface of the hill while the y-axis is perpendicular to it.
In this case, the x-component of the weight is given by:

where
m is the mass of the car
g is the acceleration of gravity

is the angle of the hill
Substituting numbers into the formula, we find
Answer:
you must throw 3 snowballs
Explanation:
We can solve this exercise using the concepts of conservation of the moment, let's define the system as formed by the refrigerator and all the snowballs. Let's write the moment
Initial. Before bumping that refrigerator
p₀ = n m v₀
Where n is the snowball number
Final. When the refrigerator moves
pf = (n m + M) v
The moment is preserved because the forces during the crash are internal
n m v₀ = (n m + M) v
n m (v₀ - v) = M v
n = M/m v/(vo-v)
Let's look for the initial velocity of the balls, suppose the person throws them with the maximum force if it slides in the snow (F = 100N), let's use the second law and Newton
F = m a
a = F / m
The distance the ball travels from zero speed to maximum speed is the extension of the arm (x = 1 m), let's look kinematically for the speed of the balls when leaving the arm
v₁² = v₀² + 2 a x
v₁² = 0+ 2 (100/1) 1
v₁ = 14.14 m / s
This is the initial speed for the crash
v₀ = v = 14.14 m / s
Let's calculate
n = M/m v/ (v₀-v)
n = 10/1 3 / (14.14 -3)
n = 2.7 balls
you must throw 3 snowballs
Answer:
a) V_a = -5.7536 10⁺⁷ V
, b) Vb = -1.92 10⁻⁷ V c) the sign of the potential change
Explanation:
The electrical potential for a point charge
V = k q / r
Where k is the Coulomb constant that you are worth 8.99 10⁹ N m² / C²
a) potential At point x = 0.250 cm = 0.250 10-2m
V_a = -8.99 10⁹ 1.6 10⁻¹⁹ /0.250 10⁻²
V_a = -5.7536 10⁺⁷ V
b) point x = 0.750 cm = 0.750 10-2
Vb = 8.99 10⁹ (-1.6 10⁻¹⁹) /0.750 10⁻²
Vb = -1.92 10⁻⁷ V
potemcial difference
ΔV = Vb- Va
V_ba = (-5.7536 + 1.92) 10⁻⁷
V_ba = -3.83 10⁻⁷ V
c) To know what would happen to a particle, let's use the relationship between the potential and the electric field
ΔV = E d
The force on the particle is
F = q₀ E
F = q₀ ΔV / d
We see that the force on the particle depends on the sign of the burden of proof. Now the burden of proof is negative to pass between the two points you have to reverse the sign of the potential, bone that the value should be reversed
V_ba = 0.83 10⁻⁷ V