answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
eduard
2 years ago
12

An electron is at the origin. (a) Calculate the electric potential VA at point A, x 5 0.250 cm. (b) Calculate the electric poten

tial VB at point B, x 5 0.750 cm. What is the potential difference VB 2 VA? (c) Would a negatively charged particle placed at point A necessarily go through this same potential difference upon reaching point B ? Explain
Physics
1 answer:
saw5 [17]2 years ago
5 0

Answer:

a)  V_a = -5.7536 10⁺⁷ V , b) Vb = -1.92 10⁻⁷ V  c) the sign of the potential change

Explanation:

The electrical potential for a point charge

     V = k q / r

Where k is the Coulomb constant that you are worth 8.99 10⁹ N m² / C²

a) potential At point x = 0.250 cm = 0.250 10-2m

    V_a =  -8.99 10⁹ 1.6 10⁻¹⁹ /0.250 10⁻²

    V_a = -5.7536 10⁺⁷ V

b) point x = 0.750 cm = 0.750 10-2

    Vb = 8.99 10⁹ (-1.6 10⁻¹⁹) /0.750 10⁻²

    Vb = -1.92 10⁻⁷ V

potemcial difference

    ΔV = Vb- Va

    V_ba = (-5.7536 + 1.92) 10⁻⁷

    V_ba = -3.83 10⁻⁷ V

c) To know what would happen to a particle, let's use the relationship between the potential and the electric field

     ΔV = E d

The force on the particle is

     F = q₀ E

     F = q₀ ΔV / d

We see that the force on the particle depends on the sign of the burden of proof. Now the burden of proof is negative to pass between the two points you have to reverse the sign of the potential, bone that the value should be reversed

          V_ba = 0.83 10⁻⁷ V

You might be interested in
In which case does viscosity play a dominant role? Case A: a typical bacterium (size ~ 1 mm1 mm and velocity ~ 20 mm/s20 mm/s) i
My name is Ann [436]

Answer:

Case A

Explanation:

given,

size of bacteria = 1 mm x 1 mm

velocity = 20 mm/s

size of the swimmer = 1.5 m x 1.5 m

velocity of swimmer = 3 m/s

Viscous force

F = \eta A \dfrac{dv}{dx}

for the bacteria

F = \eta \times 10^{-6}\times 20\times 10^{-3}

F =2\times 10^{-8} \eta\ N

for the swimmer

F = \eta \times 1.5^2\times 3

F =6.75 \eta\ N

from the above force calculation

In case B inertial force that represent mass is more than the inertial force in case of bacteria.

Viscous force is dominant in case of bacteria.

So, In Case A viscous force will be dominant.

5 0
2 years ago
Complete the passage to identify potential and kinetic energy. A rock resting on the top of a hill has energy, while a rock roll
kipiarov [429]
A rock resting on the top of a hill has POTENTIAL energy, while a rock
rolling down a hill has KINETIC energy.
8 0
2 years ago
Read 2 more answers
If the charge that enters each meter of the axon gets distributed uniformly along it, how many coulombs of charge enter a 0.100
SCORPION-xisa [38]

Answer:

Charge enter a 0.100 mm length of the axon is 8.98\times 10^{-12} C

Explanation:

Electric field E at a point due to a point charge is given by

E=k \frac{q}{r^2}

where k is the constant =9.0 \times 10^9  Nm^2 / C^2

q is the magnitude of point charge and r is the distance from the point charge

Charges entering one meter of axon is 5.\times 10^{11} \times (+e)

Charges entering 0.100 mm of axon is 5.\times 10^{11} \times (+e) \times (0.1 \times 10^{-3}

substituting the value of +e=1.6\times 10^{-19} C in above equation, we get charge enter a 0.100 mm length of the axon is

q=5.\times 10^{11} \times1.6\times 10^{-19}  \times (0.1 \times 10^{-3}\\q=8.98\times 10^{-12} C

3 0
2 years ago
A highly charged piece of metal (with uniform potential throughout) tends to spark at places where the radius of curvature is sm
k0ka [10]

Answer:

look it up

Explanation:

8 0
2 years ago
Carts A and B are identical and are moving toward each other on a track. The speed of cart A is v, while the speed of cart B is
borishaifa [10]

Answer: k= \frac{5mv^{2} }{2}

Explanation:

Recall that the formula for kinetic energy is given below as

k = \frac{mv^{2} }{2}

where k=kinetic energy (joules), m= mass of object (kg), v= velocity of object m/s)

For cart A

m_{a} = mass of cart A

v_{a} = v = velocity of cart A

K.E_{a} = kinetic energy of cart A

hence, K.E_{a} = \frac{m_{a}v^{2}  }{2}

For cart B

m_{b} = mass of cart B

v_{b} = 2v = velocity of cart B

K.E_{b} = kinetic energy of cart B

hence, K.E_{b} = \frac{m_{b}(2v^{2}) }{2} = 2m_{b} v^{2}

from the question, both cart are identical which implies they have the same mass i.e m_{a} = m_{b} = m which implies that

K.E_{a}= \frac{mv^{2} }{2} and K.E_{b}  =2mv^{2}

The total kinetic energy K is the sum of cart A and cart B kinetic energy

K=K.E_{a} + K.E_{b}

K=\frac{mv^{2} }{2} + 2mv^{2}

hence

K=\frac{5mv^{2} }{2}

6 0
2 years ago
Other questions:
  • How high above the earth's surface is g reduced to 8.80m/^2?
    12·2 answers
  • Consider a solid, rigid spherical shell with a thickness of 100 m and a density of 3900 kg/m3 . the sphere is centered around th
    5·2 answers
  • Write a hypothesis about the effect of increasing voltage on the current in the circuit. Use the "if . . . then . . . because .
    10·2 answers
  • A circular surface with a radius of 0.057 m is exposed to a uniform external electric field of magnitude 1.44 × 104 N/C. The mag
    8·1 answer
  • As a youngster, you drive a nail in the trunk of a young tree that is 3 meters tall. The nail is about 1.5 meters from the groun
    9·1 answer
  • three point charges are positioned on the x-axis 64 uc at x=ocm , 80uc at x=25cm, and -160 uc at x=50 cm. what is the magnitude
    11·1 answer
  • The oscilloscope can be thought of as a plotting machine. What is plotted on the a axis? What is plotted on the y axis? If you t
    5·1 answer
  • When Brett and Will ride the​ carousel, Brett always selects a horse on the outside​ row, whereas Will prefers the row closest t
    7·1 answer
  • If the ac peak voltage across a 100-ohm resistor is 120 V, then the average power dissipated by the resistor is ________
    12·1 answer
  • While practicing S-turns, a consistently smaller half-circle is made on one side of the road than on the other, and this turn is
    13·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!