Answer:
at y=6.29 cm the charge of the two distribution will be equal.
Explanation:
Given:
linear charge density on the x-axis, 
linear charge density of the other charge distribution, 
Since both the linear charges are parallel and aligned by their centers hence we get the symmetric point along the y-axis where the electric fields will be equal.
Let the neural point be at x meters from the x-axis then the distance of that point from the y-axis will be (0.11-x) meters.
<u>we know, the electric field due to linear charge is given as:</u>

where:
linear charge density
r = radial distance from the center of wire
permittivity of free space
Therefore,





∴at y=6.29 cm the charge of the two distribution will be equal.
Answer:
3. none of these
Explanation:
The rotational kinetic energy of an object is given by:

where
I is the moment of inertia
is the angular speed
In this problem, we have two objects rotating, so the total rotational kinetic energy will be the sum of the rotational energies of each object.
For disk 1:

For disk 2:

so the total energy is

So, none of the options is correct.
Answer:
Given that the block have two applied masses 250 g at East and 100 g at South. In order to make a situation in which block moves towards point A, we have to apply minimum number of masses to the blocks. In order to prevent block moving toward East, we have to apply a mass at West, equal to the magnitude of mass at East but opposite in direction. Therefore, mass of 250 g at West is the required additional mass that has to be added. There is already 100 g of mass acting at South, that will attract block towards South or point A. No need to add further mass in North-South direction.
Answer:
(D) theory
Explanation:
According to my research on scientific terminology, I can say that based on the information provided within the question the term being described by the statement is called a Theory. Theory can simply be described as a generalization of an idea or group of information.
I hope this answered your question. If you have any more questions feel free to ask away at Brainly.