answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
BaLLatris [955]
2 years ago
14

A student stands a distance L from a wall and claps her hands. Immediately on hearing the reflection from the wall she claps her

hands again. She continues to do this, so that successive claps and the sound of reflected claps coincide. The frequency at which she claps her hands is f. What is the speed of sound in air?
Physics
1 answer:
NISA [10]2 years ago
8 0

Answer:

Explanation:

The distance of the student from the wall is L

After hearing the reflection she claps her hand again

A complete cycle is the distance to the wall and back to the boy, so the total distance travel then is 2L, then the wave length is 2L

λ=2L

So the frequent is f

Then using wave equation

v=f λ

Since our λ=2L

Then, v=f×2L

v=2fL

The speed of sound in air is 2fL

You might be interested in
The human heart is a powerful and extremely reliable pump. Each day it takes in and discharges about 7500 L of blood. Assume tha
gregori [183]

The answers are:

a) Work=125,923.61J

b) Power=1.46watt

Why?

It seems that you forgot to write the questions of the problem, however, in order to help you, I will try to complete it.

The questions are:

a) How much work does the heart do in a day?

b) What is its power output in watts?

So, solving we have:

We need to convert from liter to cubic meters in order to use the given information, so:

1L=0.001m^{3}\\\\7500L*\frac{0.001m^{3} }{1L}=7.5m^{3}

Also, we need to find the mass given the density of the blood.

1050}\frac{kg}{m^{3}}*7.5m^{3}=7875kg

Now, calculating how much work does the heart do in a day, we have:

Work=Fd=mgh\\\\Work=7875kg*9.81\frac{m}{s^{2}}*1.63m=125,923.61J

Then, calculating what is the power output and its horsepower, we have:

Power=\frac{Work}{time}\\\\Power=\frac{125,923.61J}{86,400s}=1.46watt

Have a nice day!

7 0
2 years ago
A stone is thrown horizontally from 2.4m above the ground at 35m/s. The wall is 14m away and 1m high.At what height the stone wi
KIM [24]

The stone reaches the wall at a height of <u>1.62 m</u>.

The stone lands at a point <u>24.5 m</u> from the point of projection.

The stone is projected horizontally with a velocity u at a height <em>h</em> from the ground. The wall is located at a distance <em>x</em> from the point of projection. The stone takes a time <em>t</em> to reach the wall and in the same time the stone falls a vertical distance <em>y</em>.

The horizontal distance <em>x</em> is traveled with a constant velocity <em>u</em>.

x=ut

Calculate the time taken <em>t</em>.

t=\frac{x}{u} \\ =\frac{14m}{35 m/s} \\ =0.40s

The stone's initial vertical velocity is zero. It falls through a distance <em>y</em> in the time <em>t</em> under the action of acceleration due to gravity <em>g</em>.

y=\frac{1}{2} gt^2\\ \frac{1}{2} (9.81m/s^2)(0.40s)^2\\ =0.784m

The height  <em>h₁ </em>of the stone above the ground when it reaches the wall  is given by,

h_1=h-y\\ =(2.4m)-(0.784m)\\ =1.616m=1.62m

When the stone reaches the wall, its height from the ground is <u>1.62m.</u>

The stone thus crosses over the wall, since the height of the wall is 1 m. It reaches the ground at a distance <em>R</em> from the point of projection. If the time taken by the stone to reach the ground is <em>t₁, </em>then,

h=\frac{1}{2} gt_1^2

Calculate the time taken by the stone to reach the ground.

t_1=\sqrt{\frac{2h}{g} } \\=\sqrt{\frac{2(2.4m)}{9.81m/s^2} } \\ =0.699 s

The horizontal distance traveled by the stone is given by,

R=ut_1 \\ =(35m/s)(0.699s)\\ =24.5m

The stone lands at point 24.5 m from the point of projection and 10.5 m from the wall.

3 0
1 year ago
In an attempt to impress its friends, an acrobatic beetle runs and jumps off the bottom step of a flight of stairs. The step is
Aleks04 [339]

Answer:

0.3677181864 m

Explanation:

u = Velocity = 1.5 m/s

\theta = Angle = 20°

y = -20 cm

Velocity components

u_x=ucos\theta\\\Rightarrow u_x=1.5cos20\\\Rightarrow u_x=1.40953\ m/s

u_y=usin\theta\\\Rightarrow u_y=1.5sin20\\\Rightarrow u_y=0.51303\ m/s

Acceleration components

a_x=0

a_y=-9.81\ m/s^2

y=u_yt+\dfrac{1}{2}a_yt^2\\\Rightarrow -0.2=0.51303\times t+\dfrac{1}{2}\times -9.81t^2\\\Rightarrow 4.905t^2-0.51303t-0.2=0

t=\frac{-\left(-0.51303\right)+\sqrt{\left(-0.51303\right)^2-4\cdot \:4.905\left(-0.2\right)}}{2\cdot \:4.905}, \frac{-\left(-0.51303\right)-\sqrt{\left(-0.51303\right)^2-4\cdot \:4.905\left(-0.2\right)}}{2\cdot \:4.905}\\\Rightarrow t=0.26088, -0.15629

Time taken is 0.26088 seconds

x=u_xt+\dfrac{1}{2}a_xt^2\\\Rightarrow x=1.40953\times 0.26088\\\Rightarrow x=0.3677181864\ m

The distance the beetle travels on the ground is 0.3677181864 m

6 0
2 years ago
A car drives toward the right over the top of a hill, as shown below. An illustration of car at the top of a hill pointing right
Sav [38]

Answer: X

Explanation:

This situation can be illustrated as a car in circular motion (image attached).

In circular motion the acceleration vector \vec{a} is always directed toward the center of the circumference (that's why it's called centripetal acceleration).

So, in this case the arrow labeled X is the only that points toward the center, hence it represents the car's centripetal acceleration

6 0
2 years ago
Read 2 more answers
A biker travels at an average speed of 18 km/hr along a 0.30 km straight segment of a bike path. How much time (in hours) does t
lawyer [7]

Answer: 0.016 h

Explanation:

\text{Average speed} = \frac{\text {Total Distance}}{\text {total time taken}}

It is given that, biker has an average speed = 18 km/h

Total distance traveled = 0.30 km

Therefore, time taken by biker to travel this distance:

\Rightarrow \text{total time taken} = \frac{0.30 km}{18 km/h}=0.016 h

Thus, the biker takes 0.016 hours to travel the segment of 0.30 km at an average speed of 18 km/h.

7 0
2 years ago
Other questions:
  • What is the risk when a pwc passes too closely behind another boat?
    12·1 answer
  • an 2-kg object is moving horizontally with a speed of 4m/s. how much net force os required to keep the object movong with the sa
    8·1 answer
  • What shape is the JET experimental fusion reactor?
    15·2 answers
  • In a supermarket, you place a 22.3-N (around 5 lb) bag of oranges on a scale, and the scale starts to oscillate at 2.7 Hz. What
    14·1 answer
  • Two girls,(masses m1 and m2) are on roller skates and stand at rest, close to each other and face-to-face. Girl 1 pushes squarel
    10·1 answer
  • A 5-kg can of paint is sitting on top of a 2-meter high step ladder. How much work did you do to move the can of paint to the to
    10·1 answer
  • Force F1 acts on a particle and does work W1. Force F2 acts simultaneously on the particle and does work W2. The speed of the pa
    9·1 answer
  • Suppose we were to attempt to use a similar machine to measure the charge-to-mass ratio of protons, instead. Suppose, for simpli
    9·1 answer
  • Technician A says that the use of some RTV sealants to seal components on an engine can damage the oxygen sensor. Technician B s
    6·1 answer
  • A jet transport with a landing speed of 200 km/h reduces its speed to 60 km/h with a negative thrust R from its jet thrust rever
    8·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!