Answer:
Time taken by the leaf to displace by 1.0 m distance is
seconds
Explanation:
As we know that initial velocity of the leaf is given as

now the acceleration upwards for the leaf is

The displacement of leaf in upward direction is
d = 1 m
so now we have


seconds
Answer:
35mA
Explanation:
Hello!
To solve this problem we must use the following steps
1. Find the electrical resistance of the metal rod using the following equation

WHERE
α=
metal rod resistivity=2x10^-4 Ωm
l=leght=2m
A= Cross-sectional area

solving

2. Now we model the system as a circuit with parallel resistors, where we will call 1 the metal rod and 2 the man(see attached image)
3.we know that the sum of the currents in 1 and 2 must be equal to 5A, by the law of conservation of energy
I1+I2=5
4.as the voltage on both nodes is the same we can use ohm's law in resitance 1 and 2 (V=IR)
V1=V2
(0.14I1)=2000(i2)
solving for i1
I1=14285.7i2
5.Now we use the equation found in step 3
14285.7i2+i2=5

Explanation:
the question is unanswerable
<span>You are given a submerged submarine accelerating upward at 0.325 m/s</span>² and the density of sea water is 1.025x10³ kg/m³. The submarine's average density at this time is 22 kg/m³.