3 kilometers, it is just 5/60 or 1/12 multiplied by 36.
Answer:
Stabilizing dunes involves multiple actions. Planting vegetation reduces the impact of wind and water. Wooden sand fences can help retain sand and other material needed for a healthy sand dune ecosystem. Footpaths protect dunes from damage from foot traffic.
Explanation:
Answer:
The magnitude of the average force exerted on the water by the blade is 960 N.
Explanation:
Given that,
The mass of water per second that strikes the blade is, 
Initial speed of the oncoming stream, u = 16 m/s
Final speed of the outgoing water stream, v = -16 m/s
We need to find the magnitude of the average force exerted on the water by the blade. It can be calculated using second law of motion as :



F = -960 N
So, the magnitude of the average force exerted on the water by the blade is 960 N. Hence, this is the required solution.
Answer:
0.0367
Explanation:
The loss in kinetic energy results into work done by friction.
Since kinetic energy is given by
KE=0.5mv^{2}
Work done by friction is given as
W= umgd
Where m is the mass of suitacase, v is velocity of the suitcase, g is acceleration due to gravity, d is perpendicular distance where force is applied and u is coefficient of kinetic friction.
Making u the subject of the formula then we deduce that

Substituting v with 1.2 m/s, d with 2m and taking g as 9.81 m/s2 then

Therefore, the coefficient of kinetic friction is approximately 0.0367
Answer:
s = 23.72 m
v = 21.56 m/s²
Explanation:
given
time to reach the ground (t) = 2.2 second
we know that
a) s = u t + 0.5 g t²
u = 0 m/s
g = 9.8 m/s²
s = 0 + 0.5 × 9.8 × 2.2²
s = 23.72 m
b) impact velocity
v = √(2gh)
v = √(2× 9.8 × 23.72)
v = √464.912
v = 21.56 m/s²