answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Alex_Xolod [135]
2 years ago
6

The California sea lion is capable of making extremely fast, tight turns while swimming underwater. In one study, scientists obs

erved a sea lion making a circular turn with a radius of 0.37 m while swimming at 4.0 m/s.
What is the sea lion's centripetal acceleration, in units of g?

What percentage is this acceleration of that of an F-15 fighter jet's maximum centripetal acceleration of 9g?
Physics
1 answer:
anygoal [31]2 years ago
6 0

Answer:

Acceleration of Sea Lion is 4.41 g

This is 49% of maximum jet acceleration given as a = 9g

Explanation:

As we know that the radius of the circular loop is given as

R = 0.37 m

The speed of the fish is given as

v = 4 m/s

Now the centripetal acceleration of the sea lion is given as

a_c = \frac{v^2}{R}

a_c = \frac{4^2}{0.37}

a_c = 43.2 m/s^2

as we know that

g = 9.8 m/s^2

so we have

a = 4.41 g

Now Percentage of this acceleration wrt maximum jet acceleration is given as

P = \frac{4.41 g}{9g} \times 100

P = 49%

You might be interested in
The electric potential in a particular region of space varies only as a function of y-position and is given by the function V(y)
nikdorinn [45]

Answer:

E = 55.9583\ Volts/meter

Explanation:

First let's find the electric potential using y = 22.5:

V(y) = 1.69y^2 +15.6y+52.5

V(22.5) = 1.69(22.5)^2 + 15.6*22.5 + 52.5

V(22.5) = 1259.0625\ Volts

Then, to find the magnitude of the electric field, we just need to divide the electric potential by the distance y:

E = V/d

E = 1259.0625/22.5

E = 55.9583\ Volts/meter

3 0
2 years ago
A stock person at the local grocery store has a job consisting of the following five segments:
vaieri [72.5K]

Answer:

B

Explanation:

Work done can be said to be positive if the applied force has a component to be in the direction of the displacement and when the angle between the applied force and displacement is positive.

In 1 and 2 work done is positive

6 0
2 years ago
A father demonstrates projectile motion to his children by placing a pea on his fork's handle and rapidly depressing the curved
MariettaO [177]

Answer:

4.17 m/s

Explanation:

To solve this problem, let's start by analyzing the vertical motion of the pea.

The initial vertical velocity of the pea is

u_y = u sin \theta = (7.39)(sin 69.0^{\circ})=6.90 m/s

Now we can solve the problem by applying the suvat equation:

v_y^2-u_y^2=2as

where

v_y is the vertical velocity when the pea hits the ceiling

a=g=-9.8 m/s^2 is the acceleration of gravity

s = 1.90 is the distance from the ceiling

Solving for v_y,

v_y = \sqrt{u_y^2+2as}=\sqrt{(6.90)^2+2(-9.8)(1.90)}=3.22 m/s

Instead, the horizontal velocity remains constant during the whole motion, and it is given by

v_x = u cos \theta = (7.39)(cos 69.0^{\circ})=2.65 m/s

Therefore, the speed of the pea when it hits the ceiling is

v=\sqrt{v_x^2+v_y^2}=\sqrt{2.65^2+3.22^2}=4.17 m/s

5 0
2 years ago
According to Dr. paul Narguizian professor of Biology and Science Education at California State University, ______ are generaliz
Mazyrski [523]

Answer:

I believe the correct answer would be A :)

Explanation:

3 0
1 year ago
You are called as an expert witness to analyze the following auto accident: Car B, of mass 2000 kg, was stopped at a red light w
OLga [1]

Answer:

a). va=17.23 \frac{m}{s} or 38.54 mph

b). v=38.54 mph and limit is 35 mph

c). Completely inelastic

d). Eka=192.967 kJ

Ekt=76.071 kJ

Explanation:

m_{a}=1300kg\\m_{b}=2000kg\\x_{f}=7.25m\\u_{k}=0.65

The motion is an inelastic collision so

m_{a}*v_{a}+m_{b}*v_{b}=(m_{a}+m_{b})*v_{f}

The force of the motion is contrarest by the force of friction so

F-F_{uk} =0\\F=F_{uk}\\F_{uk}=u_{k}*m*g\\F=m*a\\a=\frac{F}{m}\\ a=\frac{F_{uk}}{m}\\a=\frac{u_{k}*m*g}{m}\\a=u_{k}*g\\a=0.65*9.8\frac{m}{s^{2}} \\a=6.39\frac{m}{s^{2}}

Now with the acceleration can find the time and the velocity final that make the distance 7.25m being united

x_{f}=x_{o}+v_{o}*t+2*a*t^{2}\\x_{o}=0\\v_{o}=0\\x_{f}=2*a*t^{2}\\t^{2}=\frac{x_{f}}{2*a}\\t=\sqrt{\frac{7.25m}{6.37\frac{m}{s^{2} } } } \\t=1.06s

So the velocity final can be find using this time

v_{f}=v_{o}+a*t\\v_{o}=0\\v_{f}=6.37\frac{m}{s^{2} } *1.06s\\v_{f}=6.79 \frac{m}{s}

a).

Replacing in the first equation the final velocity can find the initial velocity

m_{a}*v_{a}+m_{b}*v_{b}=(m_{a}+m_{b})*v_{f}

v_{b}=0

v_{a}= \frac{(m_{a}+m_{b)*v_{f}}}{m_{a}}\\v_{a}= \frac{(1300+2000)*6.37}{1300}\\v_{a}=17.23 \frac{m}{s}

b).

35mph*\frac{1m}{0.000621371mi} *\frac{1h}{3600s}=15.646\frac{m}{s}

Velocity limit in m/s is 15.646 m/s and the initial velocity is 17.23 m/s

so is exceeding the speed limit in about 1.58 m/s

or in miles per hour

3.5 mph

c).

The collision is complete inelastic because any mass can be returned to the original mass, so even they are no the same mass however in the moment they move the distance 7.25m as a same mass the motion is considered completely inelastic

d).

Ek=\frac{1}{2}*m*(v)^{2}\\  Eka=\frac{1}{2}*1300kg*(17.23\frac{m}{s})^{2}\\Eka=192.967 kJ\\Ekt=\frac{1}{2}*m*(v)^{2}\\Ekt=\frac{1}{2}*3300kg*(6.79\frac{m}{s})^{2}\\Ekt=76.071 kJ

8 0
2 years ago
Other questions:
  • a driver shifts into neutral when her 1200 kg is moving at 80 km/h and finds the speed has dropped to 65 km/h 10 s later . what
    9·1 answer
  • Consider the vector b⃗ with magnitude 4.00 m at an angle 23.5∘ north of east. what is the x component bx of this vector? express
    6·1 answer
  • A crate is placed on an adjustable, incline board. the coefficient of static friction between the crate and the board is 0.29.
    11·1 answer
  • The diagram shows the electric field around two charged objects. What is the best conclusion about the charges that can be made
    14·2 answers
  • A motion sensor is used to create the graph of a student’s horizontal velocity as a function of time as the student moves toward
    8·1 answer
  • A 5⁢kg object is released from rest near the surface of a planet such that its gravitational field is considered to be constant.
    11·1 answer
  • A weatherman carried an aneroid barometer from the ground floor to his office atop the Sears Tower in Chicago. On the level grou
    10·1 answer
  • Two parallel wires carry a current I in the same direction. Midway between these wires is a third wire, also parallel to the oth
    11·2 answers
  • The mass of a fully loaded Boeing 747 is abput 4,082,331.33 kg. If it is cruising eastward at a velocity of 253 m/s, what is its
    15·1 answer
  • Physics professor Antonia Moreno is pushed up a ramp inclined upward at an angle 31.0 ∘ above the horizontal as she sits in her
    13·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!