Answer:

Explanation:
First let's find the electric potential using y = 22.5:



Then, to find the magnitude of the electric field, we just need to divide the electric potential by the distance y:



Answer:
B
Explanation:
Work done can be said to be positive if the applied force has a component to be in the direction of the displacement and when the angle between the applied force and displacement is positive.
In 1 and 2 work done is positive
Answer:
4.17 m/s
Explanation:
To solve this problem, let's start by analyzing the vertical motion of the pea.
The initial vertical velocity of the pea is

Now we can solve the problem by applying the suvat equation:

where
is the vertical velocity when the pea hits the ceiling
is the acceleration of gravity
s = 1.90 is the distance from the ceiling
Solving for
,

Instead, the horizontal velocity remains constant during the whole motion, and it is given by

Therefore, the speed of the pea when it hits the ceiling is

Answer:
I believe the correct answer would be A :)
Explanation:
Answer:
a). va=17.23
or 38.54 mph
b). v=38.54 mph and limit is 35 mph
c). Completely inelastic
d). Eka=192.967 kJ
Ekt=76.071 kJ
Explanation:

The motion is an inelastic collision so

The force of the motion is contrarest by the force of friction so

Now with the acceleration can find the time and the velocity final that make the distance 7.25m being united

So the velocity final can be find using this time

a).
Replacing in the first equation the final velocity can find the initial velocity



b).

Velocity limit in m/s is 15.646 m/s and the initial velocity is 17.23 m/s
so is exceeding the speed limit in about 1.58 m/s
or in miles per hour
3.5 mph
c).
The collision is complete inelastic because any mass can be returned to the original mass, so even they are no the same mass however in the moment they move the distance 7.25m as a same mass the motion is considered completely inelastic
d).
