answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
garik1379 [7]
2 years ago
14

In the system you're inspecting the damper motor isn't working, You decide to see if the damper-postion sensor us sending the pr

oper signal to the which then signals the damper motor. A. heating coil B .duckwork c. energy source D. controller
Physics
1 answer:
stiks02 [169]2 years ago
8 0

Answer:

C guys

Explanation:

You might be interested in
At a local swimming pool, the diving board is elevated h = 5.5 m above the pool's surface and overhangs the pool edge by L = 2 m
Margaret [11]

Answer:

Part a)

t = \sqrt{\frac{2h}{g}}

Part b)

t = 1.06 s

Part c)

L  = 4.86 m

Explanation:

Part a)

The height of the diving board is given as

h = 5.5 m

now the speed of the diver is given as

v_0 = 2.7 m/s

when the diver will jump into the water then his displacement in vertical direction is same as that of height of diving board

So we will have

y = v_y t + \frac{1}{2}at^2

h = 0 + \frac{1}{2}gt^2

t = \sqrt{\frac{2h}{g}}

Part b)

t = \sqrt{\frac{2h}{g}}

plug in the values in the above equation

t = \sqrt{\frac{2(5.5 m)}{9.81}

t = 1.06 s

Part c)

Horizontal distance moved by the diver is given as

d = v_0 t

d = 2.7 \times 1.06

d = 2.86 m

so the distance from the edge of the pool is given as

L = 2.86 + 2

L  = 4.86 m

4 0
2 years ago
Some of the fastest dragsters (called "top fuel) do not race for more than 300-400m for safety reasons. Consider such a dragster
Masja [62]

Answer:

1.10261 times g

416.17506 mph

Explanation:

t = Time taken

u = Initial velocity

v = Final velocity

s = Displacement

a = Acceleration

g = Acceleration due to gravity = 9.81 m/s²

s=ut+\frac{1}{2}at^2\\\Rightarrow 400=0\times 8.6+\frac{1}{2}\times a\times 8.6^2\\\Rightarrow a=\frac{400\times 2}{8.6^2}\\\Rightarrow a=10.81665\ m/s^2

Dividing by g

\dfrac{a}{g}=\dfrac{10.81665}{9.81}\\\Rightarrow \dfrac{a}{g}=1.10261\\\Rightarrow a=1.10261g

The acceleration is 1.10261 times g

v^2-u^2=2as\\\Rightarrow v=\sqrt{2as+u^2}\\\Rightarrow v=\sqrt{2\times 10.81665\times 1.6\times 10^3+0^2}\\\Rightarrow v=186.04644\ m/s

In mph

186.04644\times \dfrac{3600}{1609.34}=416.17506\ mph

The speed of the dragster is 416.17506 mph

5 0
2 years ago
When Earth’s Northern Hemisphere is tilted toward the Sun during June, some would argue that the cause of our seasons is that th
Ludmilka [50]

Answer:

Distance of Earth from the Sun has nothing to do with the seasons only the tilt is responsible for the change in seasons.

Explanation:

The Earth's tilt does cause the seasons but the distance from the sun and has nothing to do with the change in seasons. In June, when the Northern Hemisphere is tilted in the direction of the Sun during the Northern Hemisphere summer the Earth is actually farthest from the Sun. In January, when the Southern Hemisphere is tilted in the direction of the Sun during the Northern Hemisphere winter the Earth is actually closest to the Sun. This is caused due to the elliptical orbit of the Earth. So, distance of Earth from the Sun has nothing to do with the seasons.

4 0
2 years ago
Inna Hurry is traveling at 6.8 m/s, when she realizes she is late for an appointment. She accelerates at 4.5 m/s^2 for 3.2 s. Wh
Alborosie

Answer:

1) v = 21.2 m/s

2) S = 63.33 m

3) s = 61.257 m

4) Deceleration, a = -4.32 m/s²

Explanation:

1) Given,

The initial velocity of Inna, u = 6.8 m/s

The acceleration of Inna, a = 4.5 m/s²

The time of travel, t = 3.2 s

Using the first equation of motion, the final velocity is

                v = u + at

                   = 6.8 + 4.5 x 3.2

                   = 21.2 m/s

The final velocity of Inna is, v = 21.2 m/s

2) Given,

The initial velocity of Lisa, u = 12 m/s

The final velocity of Lisa, v = 26 m/s

The acceleration of Lisa, a = 4.2 m/s²

Using the III equations of motion, the displacement is

                          v² = u² +2aS

                         S = (v² - u²) / 2a

                            = (26² -12²) / 2 x 4.2

                            = 63.33 m

The distance Lisa traveled, S = 63.33 m

3) Given,

The initial velocity of Ed, u = 38.2 m/s

The deceleration of Ed, d = - 8.6 m/s²

The time of travel, t = 2.1 s

Using the II equations of motion, the displacement is

                        s = ut + 1/2 at²

                           =38.2 x 2.1 + 0.5 x(-8.6) x 2.1²

                           = 61.257 m

Therefore, the distance traveled by Ed, s = 61.257 m

4) Given,

The initial velocity of the car, u = 24.2 m/s

The final velocity of the car, v = 11.9 m/s

The time taken by the car is, t = 2.85 s

Using the first equations of motion,

                         v = u + at

∴                        a = (v - u) / t

                            = (11.9 - 24.2) / 2.85

                            = -4.32 m/s²

Hence, the deceleration of the car, a = = -4.32 m/s²

5 0
2 years ago
Read 2 more answers
In a car crash, large accelerations of the head can lead to severe injuries or even death. A driver can probably survive an acce
noname [10]

Answer:

14.7 m/s

Explanation:

a = acceleration experienced by driver's head = 50 g = 50 x 9.8 m/s² = 490 m/s²

v₀ = initial speed of the driver = 0 m/s

v = final speed of the driver after 30 ms

t = time interval for which the acceleration is experienced = 30 ms = 0.030 s

Using the equation

v = v₀ + a t

Inserting the values

v = 0 + (490) (0.030)

v = 14.7 m/s

6 0
2 years ago
Other questions:
  • How are adhesion and cohesion similar? how are they different?
    12·1 answer
  • Megan left her bicycle outside on the patio while she went on vacation for several weeks. When she returned, Megan discovered a
    14·2 answers
  • If a spear is thrown at a fish swimming in a lake, it will often miss the fish completely. Why does this happen?
    13·2 answers
  • In which atmosphere layer does 80 percent of the gas in the atmosphere<br> reside?
    13·2 answers
  • A 26 foot ladder is lowered down a vertical wall at a rate of 3 feet per minute. The base of the ladder is sliding away from the
    10·1 answer
  • Geological evidence based on several radiometric techniques has provided a scientifically well-accepted age for the Earth. Repre
    11·1 answer
  • To measure the coefficient of kinetic friction by sliding a block down an inclined plane the block must be in equilibrium.
    15·1 answer
  • A boat of mass 250 kg is coasting, with its engine in neutral, through the water at speed 1.00 m/s when it starts to rain with i
    10·1 answer
  • A farmer lifts his hay bales into the top loft of his barn by walking his horse forward with a constant velocity of 8 ft/s. Dete
    5·1 answer
  • A 1,100 kg car comes uniformly to a stop. If the vehicle is accelerating at -1.2 m/s2 , which force is closest to the net force
    12·2 answers
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!