Answer:
(1) En to n-1 = 0.55 ev
(2) En-1 to n-2 = 0.389 ev
(3) ninitial =4
(4) L =483.676 ×10^-11 nm
(5) λlongest= 1773.33 nm
Explanation:
Detailed explanation of answer is given in the attached files.
Answer:
Hz
Explanation:
We know that
1 cm = 0.01 m
= Length of the human ear canal = 2.5 cm = 0.025 m
= Speed of sound = 340 ms⁻¹
= First resonant frequency
The human ear canal behaves as a closed pipe and for a closed pipe, nth resonant frequency is given as

for first resonant frequency, we have n = 1
Inserting the values


Hz
<span>These are inert gases, so we can assume they don't react with one another. Because the two gases are also subject to all the same conditions, we can pretend there's only "one" gas, of which we have 0.458+0.713=1.171 moles total. Now we can use PV=nRT to solve for what we want.
The initial temperature and the change in temperature. You can find the initial temperature easily using PV=nRT and the information provided in the question (before Ar is added) and solving for T.
You can use PV=nRT again after Ar is added to solve for T, which will give you the final temperature. The difference between the initial and final temperatures is the change. When you're solving just be careful with the units!
SIDE NOTE: If you want to solve for change in temperature right away, you can do it in one step. Rearrange both PV=nRT equations to solve for T, then subtract the first (initial, i) from the second (final, f):
PiVi=niRTi --> Ti=(PiVi)/(niR)
PfVf=nfRTf --> Tf=(PfVf)/(nfR)
ΔT=Tf-Ti=(PfVf)/(nfR)-(PiVi)/(niR)=(V/R)(Pf/nf-Pi/ni)
In that last step I just made it easier by factoring out the V/R since V and R are the same for the initial and final conditions.</span>
Answer:
Explanation:
Given
Radius of cylinder r=0.1 m
Length L=0.2 in.
Moment of inertia I=0.020 kg-m^2
Force F=1 N
We Know Torque is given by

where 

