The magnitude of the change in momentum of the stone is about 18.4 kg.m/s

<h3>Further explanation</h3>
Let's recall Impulse formula as follows:

<em>where:</em>
<em>I = impulse on the object ( kg m/s )</em>
<em>∑F = net force acting on object ( kg m /s² = Newton )</em>
<em>t = elapsed time ( s )</em>
Let us now tackle the problem!

<u>Given:</u>
mass of ball = m = 0.500 kg
initial speed of ball = vo = 20.0 m/s
final kinetic energy = Ek = 70% Eko
<u>Asked:</u>
magnitude of the change of momentum of the stone = Δp = ?
<u>Solution:</u>
<em>Firstly, we will calculate the final speed of the ball as follows:</em>



→ <em>negative sign due to ball rebounds</em>


<em>Next, we could find the magnitude of the change of momentum of the stone as follows:</em>

![\Delta p_{stone} = - [ mv - mv_o ]](https://tex.z-dn.net/?f=%5CDelta%20p_%7Bstone%7D%20%3D%20-%20%5B%20mv%20-%20mv_o%20%5D)
![\Delta p_{stone} = m[ v_o - v ]](https://tex.z-dn.net/?f=%5CDelta%20p_%7Bstone%7D%20%3D%20m%5B%20v_o%20-%20v%20%5D)
![\Delta p_{stone} = m[ v_o + v_o\sqrt{0.7} ]](https://tex.z-dn.net/?f=%5CDelta%20p_%7Bstone%7D%20%3D%20m%5B%20v_o%20%2B%20v_o%5Csqrt%7B0.7%7D%20%5D)
![\Delta p_{stone} = mv_o [ 1 + \sqrt{0.7} ]](https://tex.z-dn.net/?f=%5CDelta%20p_%7Bstone%7D%20%3D%20mv_o%20%5B%201%20%2B%20%5Csqrt%7B0.7%7D%20%5D)
![\Delta p_{stone} = 0.500 ( 20.0 ) [ 1 + \sqrt{0.7} ]](https://tex.z-dn.net/?f=%5CDelta%20p_%7Bstone%7D%20%3D%200.500%20%28%2020.0%20%29%20%5B%201%20%2B%20%5Csqrt%7B0.7%7D%20%5D)


<h3>Learn more</h3>

<h3>Answer details</h3>
Grade: High School
Subject: Physics
Chapter: Dynamics
Answer:
8, 8 W
Explanation:
The useful power of 1 Light Emitting Diode is

Total power required is 1.6 W
Number of Light Emitting Diodes would be

The number of Light Emitting Diodes is 8.
Power would be

The power that is required to run the Light Emitting Diodes is 8 W
<u>Answer:</u>
15.97 N force is tending to pull Rover forward
<u>Explanation:</u>
The woman pulls on the leash with a force of 20.0 N at an angle of 37° above the horizontal. The arrangement is shown in the given figure,
We nee to find the pulling force P. The 20.0 N force has two components, 20.0 cos 37 in horizontal direction and 20.0 sin 37 in vertical direction.
The horizontal component is equal to pulling force P, which will pull Rover forward/
So, P = 20.0 cos 37 = 15.97 N
15.97 N force is tending to pull Rover forward.