answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
DENIUS [597]
2 years ago
11

A certain factory whistle can be heard up to a distance of 2.5 km. Assuming that the acoustic output of the whistle is uniform i

n all directions, how much acoustic power is emitted by the whistle? The threshold of human hearing is 1.0 × 10-12 W/m2.
Physics
1 answer:
enyata [817]2 years ago
4 0

Answer:

Emitted power will be equal to 7.85\times 10^{-5}watt

Explanation:

It is given factory whistle can be heard up to a distance of R=2.5 km = 2500 m

Threshold of human hearing I=10^{-12}W/m^2

We have to find the emitted power

Emitted power is equal to P=I\times A

P=I\times 4\pi R^2

P=10^{-12}\times 4\times 3.14\times  2500^2=7.85\times 10^{-5}watt

So emitted power will be equal to 7.85\times 10^{-5}watt

You might be interested in
What is the direction of the magnetic field b⃗ net at point a? Recall that the currents in the two wires have equal magnitudes.
andrew11 [14]

Answer:

Explanation:

The direction of a magnetic field indicates where the magnetic inluence on the electric charges are directed to.

From the given  question, we are to determine the direction of the magnetic field bnet at a point A.

Also, having the notion that  the currents in the two wires have equal magnitudes, Then:

\bar{B_{net}} = \bar{B_1} + \bar{B_2}

\bar{B_{net}} = \frac{\mu_oI}{2 \pi r } \bar {k}+ \frac{\mu_oI}{2 \pi r } \bar {k}

\bar{B_{net}} = \frac{2 \mu_oI}{2 \pi r } \bar {k} \ out

Thus; \bar{B_{net}} points out of the screen at A.

6 0
1 year ago
A magnetic dipole with a dipole moment of magnitude 0.0243 J/T is released from rest in a uniform magnetic field of magnitude 57
ololo11 [35]

Answer:

47.76°

Explanation:

Magnitude of dipole moment = 0.0243J/T

Magnetic Field = 57.5mT

kinetic energy = 0.458mJ

∇U = -∇K

Uf - Ui = -0.458mJ

Ui - Uf = 0.458mJ

(-μBcosθi) - (-μBcosθf) = 0.458mJ

rearranging the equation,

(μBcosθf) - (μBcosθi) = 0.458mJ

μB * (cosθf - cosθi) = 0.458mJ

θf is at 0° because the dipole moment is aligned with the magnetic field.

μB * (cos 0 - cos θi) = 0.458mJ

but cos 0 = 1

(0.0243 * 0.0575) (1 - cos θi) = 0.458*10⁻³

1 - cos θi = 0.458*10⁻³ / 1.397*10⁻³

1 - cos θi = 0.3278

collect like terms

cosθi = 0.6722

θ = cos⁻ 0.6722

θ = 47.76°

7 0
2 years ago
Read 2 more answers
What is the total flux φ that now passes through the cylindrical surface? enter a positive number if the net flux leaves the cyl
trasher [3.6K]

Net flux through the cylindrical surface is given as

\phi = \frac{q}{epsilon_0}

here q = enclosed charge in the surface

so here in order to find the value of q

q = \lambda* L

so now we have

\phi = \frac{\lambda * L}{\epsilon_0}

so this is the total flux

now by Gauss's law we can find the electric field

\int E.dA = \phi

\int E.dA = \frac{\lambda * L}{\epsilon_0}

E* 2\pi rL = \frac{\lambda * L}{epsilon_0}

E = \frac{\lambda}{2\pi \epsilon_0 r}

<em>by above expression we can find the electric field at required position</em>

8 0
1 year ago
A sailboat starts from rest and accelerates at a rate of 0.21 m/s^2 over a distance of 280 m. find the magnitude of the boat's f
sasho [114]

We use the kinematic equations,

v=u+at                                          (A)

S= ut + \frac{1}{2} at^2                  (B)

Here, u is initial velocity, v is final velocity, a is acceleration and t is time.

Given,  u=0, a=0.21 \ m/s^2 and s= 280 m.

Substituting these values in equation (B), we get

280 \ m = 0 +\frac{1}{2} (0.21 m/s^2) t^2 \\\\ t^2 = \frac{280 \times 2}{0.21 } \\\\ t= 51.63 \ s.

Therefore from equation (A),

v = 0 + (0.21) \times (51.63 s)= 10.84 \ m/s

Thus, the magnitude of the boat's final velocity is 10.84 m/s and the time taken by boat to travel the distance 280 m is 51.63 s



8 0
2 years ago
16) A wheel of moment of inertia of 5.00 kg-m2 starts from rest and accelerates under a constant torque of 3.00 N-m for 8.00 s.
KiRa [710]

Answer:

57.6Joules

Explanation:

Rotational kinetic energy of a body can be determined using the expression

Rotational kinetic energy = 1/2Iω²where;

I is the moment of inertia around axis of rotation. = 5kgm/s²

ω is the angular velocity = ?

Note that torque (T) = I¶ where;

¶ is the angular acceleration.

I is the moment of inertia

¶ = T/I

¶ = 3.0/5.0

¶ = 0.6rad/s²

Angular acceleration (¶) = ∆ω/∆t

∆ω = ¶∆t

ω = 0.6×8

ω = 4.8rad/s

Therefore, rotational kinetic energy = 1/2×5×4.8²

= 5×4.8×2.4

= 57.6Joules

6 0
2 years ago
Read 2 more answers
Other questions:
  • What is the minimum frequency of light necessary to emit electrons from titanium via the photoelectric effect?
    6·2 answers
  • Which of the following solid fuels has the highest heating value?
    13·2 answers
  • A room with dimensions 7.00m×8.00m×2.50m is to be filled with pure oxygen at 22.0∘C and 1.00 atm. The molar mass of oxygen is 32
    7·1 answer
  • Which of the following expressions will have units of kg⋅m/s2? Select all that apply, where x is position, v is velocity, m is m
    10·1 answer
  • John is running down the street and hears dogs barking in the distance. How do the sound waves change as John approaches the bar
    12·1 answer
  • The moon has a mass of 7.4 × 1022 kg and completes an orbit of radius 3.8×108 m about every 28 days. The Earth has a mass of 6 ×
    15·1 answer
  • A construction worker pushes a crate horizontally on a frictionless floor with a net force of 10\, \text 10N, start text, N, end
    15·1 answer
  • A sample of a gas occupies a volume of 90 mL at 298 K and a pressure of 702 mm Hg. What is the correct expression for calculatin
    9·1 answer
  • Floor lamps usually have a base with large inertia, while the long body and top have much less inertia. Part A If you want to sh
    6·1 answer
  • A helicopter pulls upward by means of a rope on a 250 kg crate to lift it UNIFORMLY. What is the net force on the crate?
    7·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!