Answer:
v = 66.4 m/s
Explanation:
As we know that plane is moving initially at speed of

now we have




now in Y direction we can use kinematics



since there is no acceleration in x direction so here in x direction velocity remains the same
so we will have



We can first calculate the net force using the given information.
By Newton's second law, F(net) = ma:
F(net) = 25 * 4.3 = 107.5
We can now calculate the frictional force, f, which is working against the applied force, F(app) (this is why the net force is a bit lower):
f = F(net) - F(app) = 150 - 107.5 = 42.5 N
Now we can calculate the coefficient of friction, u, using the normal force, F(N):
f = uF(n) --> u = f/F(N)
u = 42.5/[25(9.8)]
u = 0.17
Answer: Both Technician A and B
Explanation:
There is a similar process in using a pressure transducer and lab scope to using a vacuum gauge.
And also, the pressure transducer can be used to tie any issues to individual cylinders if paired with a second trace consisting of the ignition pattern. Therefore, both Technician A and B are correct.
Nope. It's called 'centripetal' acceleration. The force that created it MAY be gravitational, but it doesn't have to be. For things on the surface of the Earth moving in circles, it's never gravity.
To solve this problem we will use the kinematic equations of angular motion in relation to those of linear / tangential motion.
We will proceed to find the centripetal acceleration (From the ratio of the radius and angular velocity to the linear velocity) and the tangential acceleration to finally find the total acceleration of the body.
Our data is given as:
The angular speed
The angular acceleration
The distance
The relation between the linear velocity and angular velocity is

Where,
r = Radius
Angular velocity
At the same time we have that the centripetal acceleration is






Now the tangential acceleration is given as,

Here,
Angular acceleration
r = Radius


Finally using the properties of the vectors, we will have that the resulting component of the acceleration would be



Therefore the correct answer is C.