answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
scZoUnD [109]
2 years ago
3

Solenoid Through Coil A 17.0 cm long solenoid has 53 windings and a circular cross section of radius a = 1.70 cm. The solenoid g

oes through the center of a circular coil of wire with 24 windings and radius b = 8.50 cm. The current in the circular coil changes according to i(t) = 6.0 t2 + 1.0 t. What is the mutual inductance of the coil and solenoid? What is the magnitude of the emf induced in the solenoid at t = 3.50 seconds?
Physics
1 answer:
bezimeni [28]2 years ago
3 0

Answer

Mutual inductance= 8.528x10^-6

E= 0.350mv

Explanation:

See attached file for calculation

You might be interested in
A plane flying at 70.0 m/s suddenly stalls. If the acceleration during the stall is 9.8 m/s2 directly downward, the stall lasts
tino4ka555 [31]

Answer:

v = 66.4 m/s

Explanation:

As we know that plane is moving initially at speed of

v = 70 m/s

now we have

v_x = 70 cos25

v_x = 63.44 m/s

v_y = 70 sin25

v_y = 29.6 m/s

now in Y direction we can use kinematics

v_y = v_i + at

v_y = 29.6 - (9.81 \times 5)

v_y = -19.5 m/s

since there is no acceleration in x direction so here in x direction velocity remains the same

so we will have

v = \sqrt{v_x^2 + v_y^2}

v = \sqrt{63.44^2 + 19.5^2}

v = 66.4 m/s

4 0
2 years ago
A force of 150 N accelerates a 25 kg wooden chair across a wood floor at 4.3 m/s2 . How big is the frictional force on the block
solniwko [45]
We can first calculate the net force using the given information.

By Newton's second law, F(net) = ma:

F(net) = 25 * 4.3 = 107.5

We can now calculate the frictional force, f, which is working against the applied force, F(app) (this is why the net force is a bit lower):

f = F(net) - F(app) = 150 - 107.5 = 42.5 N

Now we can calculate the coefficient of friction, u, using the normal force, F(N):

f = uF(n) --> u = f/F(N)
u = 42.5/[25(9.8)]
u = 0.17
4 0
2 years ago
Technician a says that using a pressure transducer and lab scope is a similar process to using a vacuum gauge. technician b says
Phantasy [73]

Answer: Both Technician A and B

Explanation:

There is a similar process in using a pressure transducer and lab scope to using a vacuum gauge.

And also, the pressure transducer can be used to tie any issues to individual cylinders if paired with a second trace consisting of the ignition pattern. Therefore, both Technician A and B are correct.

7 0
2 years ago
true or false:acceleration toward the center of a curved or circular path is called gravitational acceleration.
nalin [4]
Nope. It's called 'centripetal' acceleration. The force that created it MAY be gravitational, but it doesn't have to be. For things on the surface of the Earth moving in circles, it's never gravity.
5 0
2 years ago
Angular and Linear Quantities: A child is riding a merry-go-round that has an instantaneous angular speed of 1.25 rad/s and an a
serious [3.7K]

To solve this problem we will use the kinematic equations of angular motion in relation to those of linear / tangential motion.

We will proceed to find the centripetal acceleration (From the ratio of the radius and angular velocity to the linear velocity) and the tangential acceleration to finally find the total acceleration of the body.

Our data is given as:

\omega = 1.25 rad/s \rightarrow The angular speed

\alpha = 0.745 rad/s2 \rightarrow The angular acceleration

r = 4.65 m \rightarrow The distance

The relation between the linear velocity and angular velocity is

v = r\omega

Where,

r = Radius

\omega = Angular velocity

At the same time we have that the centripetal acceleration is

a_c = \frac{v^2}{r}

a_c = \frac{(r\omega)^2}{r}

a_c = \frac{r^2\omega^2}{r}

a_c = r \omega^2

a_c = (4.65 )(1.25 rad/s)^2

a_c = 7.265625 m/s^2

Now the tangential acceleration is given as,

a_t = \alpha r

Here,

\alpha = Angular acceleration

r = Radius

\alpha = (0.745)(4.65)

\alpha = 3.46425 m/s^2

Finally using the properties of the vectors, we will have that the resulting component of the acceleration would be

|a| = \sqrt{a_c^2+a_t^2}

|a| = \sqrt{(7.265625)^2+(3.46425)^2}

|a| = 8.049 m/s^2 \approx 8.05 m/s2

Therefore the correct answer is C.

7 0
2 years ago
Other questions:
  • What would be the weight of a 59.1-kg astronaut on a planet with the same density as Earth and having twice Earth's radius? . .
    6·2 answers
  • You do 174 J of work while pulling your sister back on a swing, whose chain is 5.10 m long, until the swing makes an angle of 32
    8·1 answer
  • What would happen to the apparent change in mass if the direction of the current is reversed?
    12·1 answer
  • A boy throws a 15 kg ball at 4.7 m/s to a 65 kg girl who is stationary and standing on a skateboard. After catching the ball, th
    13·1 answer
  • A person kicks a ball, giving it an initial velocity of 20.0 m/s up a wooden ramp. When the ball reaches the top, it becomes air
    12·1 answer
  • The posted speed limit on the road heading from your house to school is45 mi/h, which is about 20 m/s. If you live 8 km (8,000 m
    15·2 answers
  • The oscillating current in an electrical circuit is as follows, where I is measured in amperes and t is measured in seconds. I =
    15·1 answer
  • (a) A 15.0 kg block is released from rest at point A in the figure below. The track is frictionless except for the portion betwe
    12·1 answer
  • In this experiment, you need to examine the idea of thermal energy transfer. Using a controlled experiment, what might a good qu
    12·3 answers
  • Glider‌ ‌A‌ ‌of‌ ‌mass‌ ‌0.355‌ ‌kg‌ ‌moves‌ ‌along‌ ‌a‌ ‌frictionless‌ ‌air‌ ‌track‌ ‌with‌ ‌a‌ ‌velocity‌ ‌of‌ ‌0.095‌ ‌m/s.‌
    8·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!