Using pv=nRT
T= 22+273 K
P=1.15 Pa
R=8.31
V =5.5... (u did not write the unit so...)
Therefore n,mole= (1.15×5.5) ÷ (273+22)(8.31)
0.53 x 200ml = 106 ml of the pH 9.0 buffer + 94 ml of the pH 10 buffer gives the desired solution
<span> </span>
The reaction is given as:
Here, two moles of copper nitrate reacts with four moles of potassium iodide to give two moles of copper iodide, one mole of iodine and four moles of potassium nitrate.
First, calculate the number of moles of copper nitrate.
Number of moles is equal to the product of molarity and volume of solution in litre.
Number of moles =
(1 L =1000 mL)
= 
Copper nitrate requires =
mole of potassium iodide
=
of potassium iodide
Volume of solution in litre = 
Thus, volume of potassium iodide is =
= 
1 L =1000 mL
Volume of potassium iodide in mL =
Hence,
0.2089 M potassium iodide consist of sufficient potassium iodide to react with copper nitrate in 3.88 mL of a 0.3842 M solution of copper nitrate .
Answer:
12.78 kJ
Explanation:
The correct balanced reaction would be

Mass of methanol = 
Moles of methanol can be obtained by dividing the mass of methanol with its molar mass 

Enthalpy change for the number of moles is given by


The change in enthalpy is 12.78 kJ.
Boiling and melting points are physical properties because they do not change the chemical nature of the substance whose properties you are measuring.