answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
goldenfox [79]
2 years ago
13

Consider an optical cavity of length 40 cm. Assume the refractive index is 1, and use the formula for Icavity vs wavelength to p

lot the peak closest to 632.8 nm for 4 values of R = 0.99, 0.90, 0.75 and 0.6. For each case find the spectral width δλm, the finesse F and Q using the equations given in the book or in class. How accurate are our equations in predicting δλm? (You may want to use a graphing software for this problem.)
Physics
1 answer:
Bad White [126]2 years ago
8 0

Answer:

Diode Lasers  

Consider a InGaAsP-InP laser diode which has an optical cavity of length 250  

microns. The peak radiation is at 1550 nm and the refractive index of InGaAsP is  

4. The optical gain bandwidth (as measured between half intensity points) will  

normally depend on the pumping current (diode current) but for this problem  

assume that it is 2 nm.  

(a) What is the mode integer m of the peak radiation?  

(b) What is the separation between the modes of the cavity? Please express your  

answer as Δλ.  

(c) How many modes are within the gain band of the laser?  

(d) What is the reflection coefficient and reflectance at the ends of the optical  

cavity (faces of the InGaAsP crystal)?  

(e) The beam divergence full angles are 20° in y-direction and 5° in x-direction  

respectively. Estimate the x and y dimensions of the laser cavity. (Assume the  

beam is a Gaussian beam with the waist located at the output. And the beam  

waist size is approximately the x-y dimensions of the cavity.)  

Solution:  

(a) The wavelength λ of a cavity mode and length L are related by  

n

mL

2

λ = , where m is the mode number, and n is the refractive index.  

So the mode integer of the peak radiation is  

1290

1055.1

10250422

6

6

= ×

××× == −

−

λ

nL

m .  

(b) The mode spacing is given by nL

c f 2

=Δ . As

λ

c f = , λ

λ

Δ−=Δ 2

c f .  

Therefore, we have nm

nL f

c

20.1

)10250(42

)1055.1(

2 || 6

2 2 26

= ×××

× ==Δ=Δ −

− λλ λ .  

(c) Since the optical gain bandwidth is 2nm and the mode spacing is 1.2nm, the  

bandwidth could fit in two possible modes.  

For mode integer of 1290, nm

m

nL 39.1550

1290

10250422 6

= ××× ==

−

λ

Take m = 1291, nm

m

nL 18.1549

1291

10250422 6

= ××× ==

−

λ

Or take m = 1289, nm

m

nL 59.1551

1289

10250422 6

= ××× ==

−

λ .

Explanation:

You might be interested in
Rock X is released from rest at the top of a cliff that is on Earth. A short time later, Rock Y is released from rest from the s
babunello [35]

Answer:

Separation increases at all times that rock X falls because it falls with a greater speed

Explanation:

For both rocks, let initial velocity ∪=0

To find the displacement at any given time interval of Δt then

S= ∪Δt +0.5gΔt²

Since rock X is first released followed by Y, then X has a greater speed than Y therefore the distance covered by X is longer. This is because despite 0.5gΔt² being same for both rocks at any time Δt but rock X having already attained some velocity, its ∪Δt  is more hence the separation S increases. Conclusively, S increases at all times that rock X falls since rock X falls with a greater velocity than rock Y

7 0
2 years ago
A two-resistor voltage divider employing a 2-k? and a 3-k? resistor is connected to a 5-V ground-referenced power supply to prov
vesna_86 [32]

Answer:

circuit sketched in first attached image.

Second attached image is for calculating the equivalent output resistance

Explanation:

For calculating the output voltage with regarding the first image.

Vout = Vin \frac{R_{2}}{R_{2}+R_{1}}

Vout = 5 \frac{2000}{5000}[/[tex][tex]Vout = 5 \frac{2000}{5000}\\Vout = 5 \frac{2}{5} = 2 V

For the calculus of the equivalent output resistance we apply thevenin, the voltage source is short and current sources are open circuit, resulting in the second image.

so.

R_{out} = R_{2} || R_{1}\\R_{out} = 2000||3000 = \frac{2000*3000}{2000+3000} = 1200

Taking into account the %5 tolerance, with the minimal bound for Voltage and resistance.  

if the -5% is applied to both resistors the Voltage is still 5V because the quotient  has 5% / 5% so it cancels. to be more logic it applies the 5% just to one resistor, the resistor in this case we choose 2k but the essential is to show that the resistors usually don't have the same value. applying to the 2k resistor we have:

Vout = 5 \frac{1900}{4900}\\Vout = 5 \frac{19}{49} = 1.93 V

Vout = 5 \frac{2100}{5100}\\Vout = 5 \frac{21}{51} = 2.05 V

R_{out} = R_{2} || R_{1}\\R_{out} = 1900||2850= \frac{1900*2850}{1900+2850} = 1140

R_{out} = R_{2} || R_{1}\\R_{out} = 2100||3150 = \frac{2100*3150 }{2100+3150 } = 1260

so.

V_{out} = {1.93,2.05}V\\R_{1} = {1900,2100}\\R_{2} = {2850,3150}\\R_{out} = {1140,1260}

4 0
2 years ago
The nucleus of an atom has all of the following characteristics except that it
Sedaia [141]

Answer:

THE ANSWER IS: contains nearly all of the atom's volume.

Explanation:

3 0
2 years ago
A battery charges a parallel-plate capacitor fully and then is removed. The plates are then slowly pulled apart. What happens to
White raven [17]

Answer:

<h2>The potential difference increases </h2>

Explanation:

from the relation E= \frac{V}{d}

where E= electric field (force per coulomb)

            V= voltage

            d= distance

Hence the voltage is going to be V= E×d.

Therefore this means that increasing the distance increases the voltage.

3 0
2 years ago
A rocket moves through outer space a 12,000 m/s. At this time, how much time would be required to travel the distance from Earth
nexus9112 [7]
12000 m/s = 12 km/s. Now to go 380000 km, it will take some time. How much time is given in the formula 12km/s. You go 12 kilometers every second. So you take \frac{380000km}{12km/s} and that gives you 31,666.666 seconds. 
6 0
2 years ago
Read 2 more answers
Other questions:
  • Which object has the greatest inertia?
    13·2 answers
  • Keisha finds instructions for a demonstration on gas laws. 1. Place a small marshmallow in a large plastic syringe. 2. Cap the s
    15·2 answers
  • A standard 1 kilogram weight is a cylinder 51.0 mm in height and 42.0 mm in diameter. Determine the density of the material
    6·1 answer
  • Biologists think that some spiders "tune" strands of their web to give enhanced response at frequencies corresponding to those a
    12·1 answer
  • Two 0.40 kg soccer ball collide elastically in a head-on collision. The first ball starts at rest, and the second ball has a spe
    8·2 answers
  • Hiran is standing beside the road when he hears a bird flying away from hip and chirping. The bird’s chirp has a frequency of 18
    11·1 answer
  • Suppose that the coefficient of kinetic friction between Zak's feet and the floor, while wearing socks, is 0.250. Knowing this,
    11·1 answer
  • Three magnets are placed on a plastic stick as shown in the image. Explain how the magnets need to be rearranged so that they st
    15·2 answers
  • A pulley of radius 8.0 cm is connected to a motor that rotates at a rate 7000 rad s-1 and then decelerate uniformly at a rate of
    11·1 answer
  • Which season is signaled by average lower temperature and indirect, angled sunlight?
    12·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!