Answer:
option (b)
Explanation:
According to the Pascal's law
F / A = f / a
Where, F is the force on ram, A be the area of ram, f be the force on plunger and a be the area of plunger.
Diameter of ram, D = 20 cm, R = 20 / 2 = 10 cm
A = π R^2 = π x 100 cm^2
F = 3 tons = 3000 kgf
diameter of plunger, d = 3 cm, r = 1.5 cm
a = π x 2.25 cm^2
Use Pascal's law
3000 / π x 100 = f / π x 2.25
f = 67.5 Kgf
Answer:
(A) 374.4 J
(B) -332.8 J
(C) 0 J
(D) 41.6 J
(E) 351.8 J
Explanation:
weight of carton (w) = 128 N
angle of inclination (θ) = 30 degrees
force (f) = 72 N
distance (s) = 5.2 m
(A) calculate the work done by the rope
- work done = force x distance x cos θ
- since the rope is parallel to the ramp the angle between the rope and
the ramp θ will be 0
work done = 72 x 5.2 x cos 0
work done by the rope = 374.4 J
(B) calculate the work done by gravity
- the work done by gravity = weight of carton x distance x cos θ
- The weight of the carton = force exerted by the mass of the carton = m x g
- the angle between the force exerted by the weight of the carton and the ramp is 120 degrees.
work done by gravity = 128 x 5.2 x cos 120
work done by gravity = -332.8 J
(C) find the work done by the normal force acting on the ramp
- work done by the normal force = force x distance x cos θ
- the angle between the normal force and the ramp is 90 degrees
work done by the normal force = Fn x distance x cos θ
work done by the normal force = Fn x 5.2 x cos 90
work done by the normal force = Fn x 5.2 x 0
work done by the normal force = 0 J
(D) what is the net work done ?
- The net work done is the addition of the work done by the rope, gravitational force and the normal force
net work done = 374.4 - 332.8 + 0 = 41.6 J
(E) what is the work done by the rope when it is inclined at 50 degrees to the horizontal
- work done by the rope= force x distance x cos θ
- the angle of inclination will be 50 - 30 = 20 degrees, this is because the ramp is inclined at 30 degrees to the horizontal and the rope is inclined at 50 degrees to the horizontal and it is the angle of inclination of the rope with respect to the ramp we require to get the work done by the rope in pulling the carton on the ramp
work done = 72 x 5.2 x cos 20
work done = 351.8 J
Answer:

Explanation:
For the first ball, the moment of inertia and the kinetic energy is:


So, replacing, we get that:

At the same way, the moment of inertia and kinetic energy for second ball is:


So:

Then,
is equal to
, so:




Finally, solving for
, we get:

U = 0, initial upward speed
a = 29.4 m/s², acceleration up to 3.98 s
a = -9.8 m/s², acceleration after 3.98s
Let h₁ = the height at time t, for t ≤ 3.98 s
Let h₂ = the height at time t > 3.98 s
Motion for t ≤ 3.98 s:
h₁ = (1/2)*(29.4 m/s²)*(3.98 s)² = 232.854 m
Calculate the upward velocity at t = 3.98 s
v₁ = (29.4 m/s²)*(3.98 s) = 117.012 m/s
Motion for t > 3.98 s
At maximum height, the upward velocity is zero.
Calculate the extra distance traveled before the velocity is zero.
(117.012 m/s)² + 2*(-9.8 m/s²)*(h₂ m) = 0
h₂ = 698.562 m
The total height is
h₁ + h₂ = 232.854 + 698.562 = 931.416 m
Answer: 931.4 m (nearest tenth)