Answer:
a) 103.176 m / min
b) 1751.28 meters
Explanation:
Given:-
- Emma's and Lily's velocities ( E(t) and L(t) ) are given as functions respectively:

- Where, E ( t ) and L ( t ) are given in m / min
- Both run for a total time of 15 minutes in the same direction along the straight track defined by the absolute interval:
( 0 ≤ t ≤ 15 ) mins
- It is known that Emma is 10 meters ahead of Lily at time t = 0.
Find:-
a) Find the value of
using correct units, interpret the meaning of
b) What is the maximum distance between Emma and Lily over the time interval 0 ≤ t ≤ 15?
Solution:-
- The average value of a function f ( x ) over an interval [ a , b ] is determined using calculus via the following relation:

- The first part of the question is asking us to determine the average velocity of Emma over the time interval of ( 2 , 8 ). Therefore, ( E_avg ) can be determined using the above relation:

- We will evaluate the integral formulation above to determine Emma's average velocity over the 2 ≤ t ≤ 8 minute range:

- Complete the square in the denominator:

- Use the following substitution:

- Substitute the relations for (u) and (dt) in the above E_avg expression.

- Use the following standard integral:

- Evaluate:

- Apply back substitution for ( u ):
![E_a_v_g = \frac{1}{6}*[\frac{75100* arctan ( \frac{5*(16 - 7 )}{\sqrt{6797} } )}{\sqrt{6797} } - \frac{75100* arctan ( \frac{5*(4 - 7 )}{\sqrt{6797} } )}{\sqrt{6797} } ]\\\\](https://tex.z-dn.net/?f=E_a_v_g%20%3D%20%5Cfrac%7B1%7D%7B6%7D%2A%5B%5Cfrac%7B75100%2A%20arctan%20%28%20%5Cfrac%7B5%2A%2816%20-%207%20%29%7D%7B%5Csqrt%7B6797%7D%20%7D%20%20%29%7D%7B%5Csqrt%7B6797%7D%20%7D%20%20-%20%5Cfrac%7B75100%2A%20arctan%20%28%20%5Cfrac%7B5%2A%284%20-%207%20%29%7D%7B%5Csqrt%7B6797%7D%20%7D%20%20%29%7D%7B%5Csqrt%7B6797%7D%20%7D%20%5D%5C%5C%5C%5C)
- Plug in the limits and find Emma's average velocity:
![E_a_v_g = 151.82037*[arctan (0.54582 ) - arctan ( -0.18194 ) ]\\\\E_a_v_g = 103.176 \frac{m}{min}](https://tex.z-dn.net/?f=E_a_v_g%20%3D%20151.82037%2A%5Barctan%20%280.54582%20%29%20-%20arctan%20%28%20-0.18194%20%29%20%5D%5C%5C%5C%5CE_a_v_g%20%3D%20103.176%20%5Cfrac%7Bm%7D%7Bmin%7D)
Answer: Emma's average speed over the interval ( 2 ≤ t ≤ 8 ) is 103.179 meters per minute.
- The displacement S ( E ) of Emma from time t = 0 till time ( t ) over the absolute interval of 0≤t≤15 is given by the relation:
![S (E) = S_o + \int\limits^t_0 {E(t)} \, dt\\\\S ( E ) = 10 + \frac{75100*arctan( \frac{5*(2t - 7 )}{\sqrt{6797} }) }{\sqrt{6797} } |_0^t\\\\S ( E ) = 10 + [ \frac{75100*arctan( \frac{5*(2t - 7 )}{\sqrt{6797} }) }{\sqrt{6797} } - \frac{75100*arctan( \frac{5*(0 - 7 )}{\sqrt{6797} }) }{\sqrt{6797} } ]\\\\S ( E ) = \frac{75100*arctan( \frac{5*(2t - 7 )}{\sqrt{6797} }) }{\sqrt{6797} } + 375.71098\\](https://tex.z-dn.net/?f=S%20%28E%29%20%3D%20S_o%20%2B%20%5Cint%5Climits%5Et_0%20%7BE%28t%29%7D%20%5C%2C%20dt%5C%5C%5C%5CS%20%28%20E%20%29%20%3D%2010%20%2B%20%5Cfrac%7B75100%2Aarctan%28%20%5Cfrac%7B5%2A%282t%20-%207%20%29%7D%7B%5Csqrt%7B6797%7D%20%7D%29%20%7D%7B%5Csqrt%7B6797%7D%20%7D%20%7C_0%5Et%5C%5C%5C%5CS%20%28%20E%20%29%20%3D%2010%20%2B%20%5B%20%5Cfrac%7B75100%2Aarctan%28%20%5Cfrac%7B5%2A%282t%20-%207%20%29%7D%7B%5Csqrt%7B6797%7D%20%7D%29%20%7D%7B%5Csqrt%7B6797%7D%20%7D%20-%20%5Cfrac%7B75100%2Aarctan%28%20%5Cfrac%7B5%2A%280%20-%207%20%29%7D%7B%5Csqrt%7B6797%7D%20%7D%29%20%7D%7B%5Csqrt%7B6797%7D%20%7D%20%5D%5C%5C%5C%5CS%20%28%20E%20%29%20%3D%20%20%5Cfrac%7B75100%2Aarctan%28%20%5Cfrac%7B5%2A%282t%20-%207%20%29%7D%7B%5Csqrt%7B6797%7D%20%7D%29%20%7D%7B%5Csqrt%7B6797%7D%20%7D%20%20%2B%20375.71098%5C%5C)
- The displacement S ( L ) of Lily from time t = 0 till time ( t ) over the absolute interval of 0 ≤ t ≤ 15 is given by the relation:

Apply integration by parts:

Re-apply integration by parts 2 more times:

- The distance between Emma and Lily over the time interval 0 < t < 15 mins can be determined by subtracting S ( L ) from S ( E ):

- The maximum distance ( S ) between Emma and Lily is governed by the critical value of S ( t ) for which function takes either a minima or maxima.
- To determine the critical values of the function S ( t ) we will take the first derivative of the function S with respect to t and set it to zero:
![\frac{dS}{dt} = \frac{d [ S(E) - S(L)]}{dt} \\\\\frac{dS}{dt} = E(t) - L(t) \\\\\frac{dS}{dt} = \frac{7510}{t^2 - 7t+80.22} - 12t^3*e^-^0^.^5^t = 0\\\\( 12t^5 - 84t^4 + 962.64t^3) *e^-^0^.^5^t - 7510 = 0\\\\t = 4.233 , 11.671](https://tex.z-dn.net/?f=%5Cfrac%7BdS%7D%7Bdt%7D%20%3D%20%5Cfrac%7Bd%20%5B%20S%28E%29%20-%20S%28L%29%5D%7D%7Bdt%7D%20%20%20%5C%5C%5C%5C%5Cfrac%7BdS%7D%7Bdt%7D%20%3D%20E%28t%29%20-%20L%28t%29%20%5C%5C%5C%5C%5Cfrac%7BdS%7D%7Bdt%7D%20%3D%20%5Cfrac%7B7510%7D%7Bt%5E2%20-%207t%2B80.22%7D%20%20%20-%2012t%5E3%2Ae%5E-%5E0%5E.%5E5%5Et%20%3D%200%5C%5C%5C%5C%28%2012t%5E5%20-%2084t%5E4%20%2B%20962.64t%5E3%29%20%2Ae%5E-%5E0%5E.%5E5%5Et%20-%207510%20%3D%200%5C%5C%5C%5Ct%20%3D%204.233%20%2C%2011.671)
- We will plug in each value of t and evaluate the displacement function S(t) for each critical value: