answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
ASHA 777 [7]
2 years ago
5

A sample of silver (with work function Φ=4.52 eV ) is exposed to an ultraviolet light source (????=200 nm), which results in the

ejection of photoelectrons. What changes will be observed if:
1. The silver is replaced with copper (Φ= 5.10 eV)?

a. more energetic photoelectrons (on average)
b. no photoelectrons are emitted more photoelectrons ejected
c. less energetic photoelectrons (on average)
d. fewer photoelectrons ejected

2. A second (identical) light source also shines on the metal?

a. fewer photoelectrons ejected
b. no photoelectrons are emitted more
c. energetic photoelectrons (on average)
d. less energetic photoelectrons (on average)
e. more photoelectrons ejected


3. The ultraviolet source is replaced with an X-ray source that emits the same number of photons per unit time as the original ultraviolet source?

a. no photoelectrons are emitted
b. less energetic photoelectrons (on average)
c. fewer photoelectrons ejected
d. more energetic photoelectrons (on average)
e. more photoelectrons ejected
Physics
1 answer:
Crank2 years ago
8 0

Answer:

1. c

2. e

3. d

Explanation:

1.

From Einstein's Photoelectric Equation, we know that:

Energy given up by photon = Work Function + K.E of Electron

hc/λ = φ + K.E

where,

h = Plank's Constant = 6.626 x 10⁻³⁴ J.s

c = speed of light = 3 x 10⁸ m/s

λ = wavelength of light source = 200 nm = 2 x 10⁻⁷ m

φ = (5.1 eV)(1.6 x 10⁻¹⁹ J/eV) = 8.16 x 10⁻¹⁹ J

Therefore,

(6.626 x 10⁻³⁴ J.s)(3 x 10⁸ m/s)/(2 x 10⁻⁷ m) - 8.16 x 10⁻¹⁹ = K.E

K.E = (9.939 - 8.16) x 10⁻¹⁹ J

K.E = 1.778 x 10⁻¹⁹ J

The positive answer shows that electrons will be emitted. Since it is clear from the equation the the K.E of electron decreases with the increase in work function. Therefore:

c. <u>less energetic photo-electrons (on average)</u>

<u></u>

2.

The increase in light sources means an increase in the intensity of light. The no. of photons are increased, due to increase of intensity. Thus, more photons hit the metal and they eject greater no. of electrons. Therefore,

e. <u>more photo-electrons ejected</u>

<u></u>

3.

X-rays have smaller wavelength and greater energy than ultraviolet rays. Thus, the photons with greater energy will strike the metal and as a result, electrons with higher energy will be ejected.

d. <u>more energetic photo-electrons (on average)</u>

You might be interested in
Which statements can be inferred from the Paleozoic era time scale? There was volcanic activity during the Paleozoic era. Dinosa
Alchen [17]

Answer:

A,C,E

Explanation:

5 0
2 years ago
Read 2 more answers
Two objects are placed in thermal contact and are allowed to come to equilibrium in isolation. the heat capacity of object a is
Harman [31]
Given:
Ca = 3Cb                      (1)
where
Ca =  heat capacity of object A
Cb =  heat capacity f object B

Also,
Ta = 2Tb                     (2)
where
Ta = initial temperature of object A
Tb = initial temperature of object B.

Let
Tf =  final equilibrium temperature of both objects,
Ma = mass of object A,
Mb = mass of object B.

Assuming that all heat exchange occurs exclusively between the two objects, then energy balance requires that
Ma*Ca*(Ta - Tf) = Mb*Cb*(Tf - Tb)           (3)

Substitute (1) and (2) into (3).
Ma*(3Cb)*(2Tb - Tf) = Mb*Cb*(Tf - Tb)
3(Ma/Mb)*(2Tb - Tf) = Tf - Tb

Define k = Ma/Mb, the ratio f the masses.
Then
3k(2Tb - Tf) = Tf - Tb
Tf(1+3k) = Tb(1+6k)
Tf = [(1+6k)/(1+3k)]*Tb

Answer:
T_{f} =( \frac{1+6k}{1+3k} )T_{b}= \frac{1}{2}( \frac{1+6k}{1+3k})T_{a}
where
k= \frac{M_{a}}{M_{b}} 
7 0
2 years ago
Finally, you are ready to answer the main question. Cheetahs, the fastest of the great cats, can reach 50.0 miles/hour miles/hou
dolphi86 [110]

Answer:

a = 10.07m/s^2

Their acceleration in meters per second squared is 10.07m/s^2

Explanation:

Acceleration is the change in velocity per unit time

a = ∆v/t

Given;

∆v = 50.0miles/hour - 0

∆v = 50.0miles/hours × 1609.344 metres/mile × 1/3600 seconds/hour

∆v = 22.352m/s

t = 2.22 s

So,

Acceleration a = ∆v/t = 22.352m/s ÷ 2.22s

a = 10.07m/s^2

Their acceleration in meters per second squared is 10.07m/s^2

7 0
2 years ago
Read 2 more answers
1. What is the momentum of a golf ball with a mass of 62 g moving at 73 m/s?
Anit [1.1K]

Answer:

<h3>The answer is 4.53 kgm/s</h3>

Explanation:

The momentum of an object can be found by using the formula

<h3>momentum = mass × velocity</h3>

From the question

mass = 62 g = 0.062 kg

velocity = 73 m/s

We have

momentum = 0.062 × 73 = 4.526

We have the final answer as

<h3>4.53 kgm/s</h3>

Hope this helps you

4 0
2 years ago
You need to determine the density of an unknown liquid and decide to perform an experiment. You notice that a wooden block float
Allushta [10]

Answer:

pu = 1260.9kg/m^3

the density of the unknown liquid is 1260.9kg/m^3

Explanation:

The density of a liquid is inversely proportional to the volume (height) of object submerged in it.

High density liquid possess higher buoyant force preventing objects from submerging.

p ∝ 1/V ∝ 1/h

since V = Ah

pu/pw = hw/hu

pu = pwhw/hu

Where;

p = density

h = height submerged

pu and pw is the density of unknown liquid and water respectively

hu and hw is the height of object submerged in unknown liquid and water respectively

pw = 1000kg/m^3

hu = 4.6cm = 0.046m

hw = 5.8cm = 0.058m

Substituting the given values;

pu = 1000×0.058/0.046

pu = 1260.9kg/m^3

the density of the unknown liquid is 1260.9kg/m^3

5 0
2 years ago
Other questions:
  • What is a limitation of the electron cloud model theory that a law about electrons would not have?
    11·2 answers
  • Microwave ovens emit microwave energy with a wavelength of 12.6 cm. what is the energy of exactly one photon of this microwave r
    10·2 answers
  • The intensity at a distance of 6.0 m from a source that is radiating equally in all directions is 6.0 × 10-10 w/m2 . what is the
    5·1 answer
  • The curved section of a horizontal highway is a circular unbanked arc of radius 740m. If the coefficient of static friction betw
    15·2 answers
  • A large container, 120 cm deep is filled with water. If a small hole is punched in its side 77.0 cm from the top, at what initia
    11·1 answer
  • Which of the following statements characterizing types of waves are true?
    5·1 answer
  • A 1.7-kg block of wood rests on a rough surface. A 0.011-kg bullet strikes the block with a speed of 670 m/s and embeds itself.
    5·1 answer
  • Geological evidence based on several radiometric techniques has provided a scientifically well-accepted age for the Earth. Repre
    11·1 answer
  • A baggage handler at an airport applies a constant horizontal force with magnitude F1 to push a box, of mass m, across a rough h
    11·1 answer
  • A compressed spring does not have elastic potential energy.
    10·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!