answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
oksian1 [2.3K]
2 years ago
10

A 12 cm diameter piston-cylinder device contains air at a pressure of 100 kPa at 24oC. The piston is initially 20 cm from the ba

se of the cylinder. The gas is now compressed and 0.1 kJ of boundary work is added to the gas. The temperature of the gas remains constant during this process.
a. How much heat was transferred to/from the gas?
b. What is the final volume and pressure in the cylinder?
c. Find the change in entropy of the gas. Why is this value negative if entropy always increases in actual processes?
Physics
1 answer:
lina2011 [118]2 years ago
4 0

Answer:

ΔQ = 0.1 kJ

\mathbf{v_f = 1.445*10^{-3}  m^3}

\mathbf{P_f = 156.5 \ kPa}

ΔS = -0.337 J/K

The value negative is due to the fact that there is need to be the same amount of positive change in surrounding as a result of compression.

Explanation:

GIven that:

Diameter of the piston-cylinder = 12 cm

Pressure of the piston-cylinder = 100 kPa

Temperature =24 °C

Length of the piston = 20 cm

Boundary work ΔW = 0.1 kJ

The gas is compressed and The temperature of the gas remains constant during this process.

We are to find ;

a. How much heat was transferred to/from the gas?

According to the first law of thermodynamics ;

ΔQ = ΔU + ΔW

Given that the temperature of the gas remains constant during this process; the isothermal process at this condition ΔU = 0.

Now

ΔQ = ΔU + ΔW

ΔQ = 0 + 0.1 kJ

ΔQ = 0.1 kJ

Thus; the amount of heat that was transferred to/from the gas is : 0.1 kJ

b. What is the final volume and pressure in the cylinder?

In an isothermal process;

Workdone W = \int dW

W = \int pdV \\ \\ \\W = \int \dfrac{nRT}{V}dv \\ \\ \\ W = nRt \int  \dfrac{dv}{V}  \\ \\ \\ W  = nRT In V |^{V_f} __{V_i}}  \\ \\ \\ W = nRT \ In \dfrac{V_f}{V_i}

Since the gas is compressed ; then v_f< v_i

However;

W =- nRT \ In \dfrac{V_f}{V_i}

W =- P_1V_1  \ In \dfrac{V_f}{V_i}

The initial volume for the cylinder is calculated as ;

v_1 = \pi r^2 h \\ \\   v_1 = \pi r^2 L \\ \\ v_1 = 3.14*(6*10^{-2})^2*(20*10^{-2}) \\ \\ v_1 = 2.261*10^{-3} \ m^3

Replacing over values into the above equation; we have :

100 =  - ( 100*10^3 *2.261*10^{_3}) In (\dfrac{v_f}{v_i}) \\ \\ - In (\dfrac{v_f}{v_i})= \dfrac{100}{(100*10^3*2.261*10^{-3})} \\ \\ - In \ v_f  + In \  v_i = \dfrac{100}{226.1} \\ \\   - In \ v_f  = - In \ v_i + \dfrac{100}{226.1}  \\ \\  - In \ v_f  = - In (2.261*10^{-3} + \dfrac{100}{226.1 } \\ \\  - In \ v_f  = 6.1 + 0.44 \\ \\  - In \ v_f  = 6.54 \\ \\  - In \ v_f  = -6.54 \\ \\ v_f = e^{-6.54} \\ \\ \mathbf{v_f = 1.445*10^{-3}  m^3}

The final pressure can be calculated by using :

P_1V_1 = P_2V_2 \\ \\ P_iV_i = P_fV_f

P_f =\dfrac{P_iV_i}{V_f}

P_f =\dfrac{100*2.261*10^{-3}}{1.445*10^{-3}}

P_f = 1.565*10^2 \ kPa

\mathbf{P_f = 156.5 \ kPa}

c. Find the change in entropy of the gas. Why is this value negative if entropy always increases in actual processes?

The change in entropy of the gas is given  by the formula:

\Delta S=\dfrac{\Delta Q}{T}

where

T =  24 °C = (24+273)K

T = 297 K

\Delta S=\dfrac{-100 \ J}{297 \ K}

ΔS = -0.337 J/K

The value negative is due to the fact that there is need to be the same amount of positive change in surrounding as a result of compression.

You might be interested in
The filament in the bulb is moving back and forth, first pushed one way and then the other. What does this imply about the curre
Anestetic [448]

Answer:

energy carried by the current is given by the pointyng vector

Explanation:

The current is defined by

       i = dQ / dt

this is the number of charges per unit area over time.

The movement of the charge carriers (electrons) is governed by the applied potential difference, when the filament has a movement the drag speed of these moving electrons should change slightly.

But the energy carried by the current is given by the pointyng vector of the electromagnetic wave

            S = 1 / μ₀ EX B

It moves at the speed of light and its speed depends on the properties of the doctor and is not disturbed by small changes in speed, therefore the current in the circuit does not change due to this movement

5 0
2 years ago
A 0.200 kg plastic ball moves with a velocity of 0.30 m/s. It collides with a second plastic ball of mass 0.100 kg, which is mov
zzz [600]

Answer:

0.22m/s

Explanation:

The total momentum of the System is conserved. Total momentum of the system before the collision is equal to the total momentum of the system after collision. The total momentum is the sum of individual momentum of all the objects in that system.

momentum of an object = mass* velocity

Total Momentum before collision = 0.2*0.3 + 0.1*0.1= 0.07 kg⋅m/s;

Total momentum after collision = 0.1*0.26 + 0.2*x = 0.07;

Solve for x.

4 0
2 years ago
An organ pipe open at both ends has a radius of 4.0 cm and a length of 6.0 m. what is the frequency (in hz) of the third harmoni
Marysya12 [62]

When air is blown into the open pipe,

L = \frac{nλ}{2}

where nis any integral number 1,2,3,4 etc. and λ is the wavelength of the oscillation

⇒λ=\frac{2L} {n}

Note here that n=1 is for fundamental, n=2 is first harmonic and so on..

⇒ third harmonic will be n=4

Given L=6m, n=4, solving for λ we get:

λ=\frac{(2)*(6)}{4} =3m

Relationship of frequency(f), velocity of sound (c) and wavelength(λ) is:

c=f.λ Or f= \frac{c}{λ}

⇒f=\frac{344}{3}

≈115 Hz

8 0
2 years ago
If a body is moving in the horizontal axis with a velocity Vx= 6m/s and in the vertical axis Vy=8m/s What is the angle Theta abo
cluponka [151]

Answer: C

Explanation: It's a lot of math.

7 0
2 years ago
Total resistance across any branch of a circuit can be found by analyzing whether the branch is connected in
atroni [7]

Answer: A.

series or parallel

Explanation:

Total resistance across any branch of a circuit can be found by analyzing whether the branch is connected in series or parallel.

The resistors are connected either in series or parallel. Therefore, the resistance of resistors across a circle can be calculated in series and parallel.

7 0
2 years ago
Other questions:
  • a 100 kg gymnast comes to a stop after tumbling. her feet do -5000J of net work to stop her. Use the work-kinetic energy theorem
    10·2 answers
  • A skydiver deploys his parachute when he is 1000m directly above his desired landing spot. He then falls through the air at a st
    7·1 answer
  • If the force of gravity between a book of mass 0.50 kg and a calculator of 0.100 kg is 1.5 × 10-10 N, how far apart are they?  (
    8·1 answer
  • A robot probe drops a camera off the rim of a 239 m high cliff on mars, where the free-fall acceleration is −3.7 m/s2 .
    13·1 answer
  • The voltage entering a transformer’s primary winding is 120 volts. The primary winding is wrapped around the iron core 10 times.
    13·2 answers
  • A simple watermelon launcher is designed as a spring with a light platform for the watermelon. When an 8.00 kg watermelon is put
    15·1 answer
  • A block weighing 400 kg rests on a horizontal surface and supports on top of it ,another block of weight 100 kg which is attache
    10·1 answer
  • If you pull a resistant puppy with its leash in a horizontal direction, it takes 80 N to get it going. You can then keep it movi
    9·1 answer
  • Un lector de DVD, la velocidad de giro es de 5400 rpm. determina el valor velocidad angular en rad/s,la frecuencia y el periodo
    13·1 answer
  • A point charge of -3.0 x 10-C is placed at the origin of coordinates. Find the clectric field at the point 13. X= 5.0 m on the x
    8·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!