answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
ozzi
2 years ago
11

An 800-kHz radio signal is detected at a point 4.5 km distant from a transmitter tower. The electric field amplitude of the sign

al at that point is 0.63 V/m. Assume that the signal power is radiated uniformly in all directions and that radio waves incident upon the ground are completely absorbed. What is the magnetic field amplitude of the signal at that point? (c = 3.0 × 108 m/s, μ0 = 4π × 10-7 T ∙ m/A, ε0 = 8.85 × 10-12 C2/N ∙ m2)
Physics
1 answer:
saul85 [17]2 years ago
8 0

Answer:

2.1\times 10^{-9} T

Explanation:

We are given that

Frequency,f=800KHz=800\times 10^{3} Hz

1kHz=10^{3} Hz

Distance,d=4.5 km=4.5\times 10^{3} m

1 km=1000 m

Electric field,E=0.63V/m

We have to find the magnetic field amplitude of the signal at that point.

c=3\times 10^8 m/s

We know that

B=\frac{E}{c}

B=\frac{0.63}{3\times 10^8}=0.21\times 10^{-8} T

B=2.1\times 10^{-9} T

You might be interested in
An object moving at a velocity of 32m/s slows to a stop in 4 seconds. What was its acceleration?
Romashka [77]

Answer:

8m/s

Explanation:

a=d/t

a=32/4

a=8 m/s

6 0
2 years ago
Read 2 more answers
if a torque of 55.0 N/m is required and the largest force that can be exerted by you is 135 N what is th e length of the lever a
Whitepunk [10]

Answer:

r=0.41m

Explanation:

Torque is defined as the cross product between the position vector ( the lever arm vector connecting the origin to the point of force application) and the force vector.

\tau=r\times F

Due to the definition of cross product, the magnitude of the torque is given by:

\tau=rFsin\theta

Where \theta is the angle between the force and lever arm vectors. So, the length of the lever arm (r) is minimun when sin\theta is equal to one, solving for r:

r=\frac{\tau}{F}\\r=\frac{55\frac{N}{m}}{135N}\\r=0.41m

7 0
2 years ago
You may have noticed runaway truck lanes while driving in the mountains. These gravel-filled lanes are designed to stop trucks t
kati45 [8]

Answer:

The  coefficient of kinetic friction  \mu_k =  0.724

Explanation:

From the question we are told that

   The  length of the lane is  l =  36.0 \  m

    The speed of the truck is  v  =  22.6\  m/s

     

Generally from the work-energy theorem we have that  

    \Delta KE  =   N  *  \mu_k *  l

Here N  is the normal force acting on the truck which is mathematically represented as

     \Delta KE is the change in kinetic energy which is mathematically represented as

        \Delta KE =  \frac{1}{2} *  m *  v^2

=>     \Delta KE =  0.5  *  m *  22.6^2

=>      \Delta KE =  255.38m

        255.38m =    m *  9.8  *  \mu_k *   36.0

=>     255.38  =    352.8  *  \mu_k

=>   \mu_k =  0.724

 

6 0
2 years ago
Determine the torque applied to the shaft of a car that transmits 225 hp
Arisa [49]

Incomplete question.The complete question is here

Determine the torque applied to the shaft of a car that transmits 225 hp and rotates at a rate of 3000 rpm.

Answer:

Torque=0.51 Btu

Explanation:

Given Data

Power=225 hp

Revolutions =3000 rpm

To find

T( torque )=?

Solution

As

T(Torque)=\frac{W(Work)}{2\pi n(Revolutions) }

As force moves an object through a distance, work is done on the object. Likewise, when a torque rotates an object through an angle, work is done.

So

T=\frac{225*42.207}{2\pi 3000}\\ T=0.51 Btu

8 0
2 years ago
A physics professor that doesn’t get easily embarrassed stands at the center of a frictionless turntable with arms outstretched
mr Goodwill [35]
Apply conservation of angular momentum:
L = Iw = const.
L = angular momentum, I = moment of inertia, w = angular velocity, L must stay constant.

L must stay the same before and after the professor brings the dumbbells closer to himself.

His initial angular velocity is 2π radians divided by 2.0 seconds, or π rad/s. His initial moment of inertia is 3.0kg•m^2

His final moment of inertia is 2.2kg•m^2.

Calculate the initial angular velocity:
L = 3.0π

Final angular velocity:
L = 2.2w

Set the initial and final angular momentum equal to each other and solve for the final angular velocity w:

3.0π = 2.2w
w = 1.4π rad/s

The rotational energy is given by:
KE = 0.5Iw^2

Initial rotational energy:
KE = 0.5(3.0)(π)^2 = 14.8J

Final rotational energy:
KE = 0.5(2.2)(1.4)^2 = 21.3J

There is an increase in rotational energy. Where did this energy come from? It came from changing the moment of inertia. The professor had to exert a radially inward force to pull in the dumbbells, doing work that increases his rotational energy.
3 0
2 years ago
Read 2 more answers
Other questions:
  • What is the standard metric unit of power
    11·1 answer
  • Which of the following substances will show the smallest change in temperature when equal amounts of energy are absorbed?
    7·2 answers
  • A 1200-kilogram space vehicle travels at 4.8 meters per second along the level surface of Mars. If the magnitude of the gravitat
    8·2 answers
  • Why did the acorn fall to earth instead of rising up to the moon?
    8·2 answers
  • Sarah invested 12000 in a unit trust 5 years ago, the value of the unit trust has increased by 7% per annum for the last 3 years
    10·2 answers
  • A motion sensor is used to create the graph of a student’s horizontal velocity as a function of time as the student moves toward
    8·1 answer
  • a 2.0 kg hoop rolls without slipping on a horizontal surface so that its center proceeds to the right with a constant linear spe
    7·1 answer
  • An infinitely long cylinder of radius R has linear charge density λ. The potential on the surface of the cylinder is V0, and the
    9·1 answer
  • 1. For each of the following scenarios, describe the force providing the centripetal force for the motion: a. a car making a tur
    10·1 answer
  • A projectile is launched at an angle of 60° from the horizontal and at a velocity of
    15·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!