answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Luden [163]
1 year ago
10

A refrigerator with a weight of 1,127 newtons needs to be moved into a house using a ramp. The length of the ramp is 2.1 meters,

and its height is 0.85 meters. What is the percentage efficiency if a force of 496 newtons is applied to the refrigerator?
A. 44 percent
B. 58 percent
C. 64 percent
D. 76 percent
E. 92 percent
Physics
2 answers:
irinina [24]1 year ago
7 0
The answer will be D. 76 percent since 496 is out of 1,127N
lina2011 [118]1 year ago
3 0
496/1127 = 0.44 = 44% 

<span>sin A = 0.85/2.1. </span>
<span>A = 23.9o. </span>

<span>Fp = 1127 sin23.9 = 457 N. = Force parallel to the ramp. </span>

<span>Fn = 1127 Cos23.9 = 1,030 N. = Force </span>
<span>perpendicular to the ramp = Normal force. </span>

<span>Eff. = Fp/Fap = 457/496 = 0.92 = 92%
Correct answer: 92%</span>
You might be interested in
A careful photographic survey of Jupiter’s moon Io by the spacecraft Voyager 1 showed active volcanoes spewing liquid sulfur to
Y_Kistochka [10]

Answer:

529.15 m/s

Explanation:

h = Maximum height = 70000 m

g = Acceleration due to gravity = 2 m/s²

m = Mass of sulfur

As the potential and kinetic energies are conserved

mgh=\dfrac{1}{2}mv^2\\\Rightarrow h=\dfrac{v^2}{2g}\\\Rightarrow v=\sqrt{2gh}\\\Rightarrow v=\sqrt{2\times 2\times 70000}\\\Rightarrow v=529.15\ m/s

The speed with which the liquid sulfur left the volcano is 529.15 m/s

7 0
2 years ago
You are using a hydrogen discharge tube and high quality red and blue light filters as the light source for a Michelson interfer
boyakko [2]

Answer:

final displacement = +24484.5 nm

Explanation:

The path difference when 158 bright spots were observed with red light (λ1 = 656.3 nm) is given as;

Δr = 2d2 - 2d1 = 150λ1

So, 2d2 - 2d1 = 150λ1

Dividing both sides by 2 to get;

d2 - d1 = 75λ1 - - - - eq1

Where;

d1 = distance between the fixed mirror and the beam splitter

d2 = position of moveable mirror from splitter when 158 bright spots are observed

Now, the path difference between the two waves when 114 bright spots were observed is;

Δr = 2d'2 - 2d1 = 114λ1

2d'2 - 2d1 = 114λ1

Divide both sides by 2 to get;

d'2 - d1 = 57λ1

Where;

d'2 is the new position of the movable mirror from the splitter

Now, the displacement of the moveable mirror is (d2 - d'2). To get this, we will subtract eq2 from eq1.

(d2 - d1) - (d'2 - d1) = 75λ1 - 57λ2

d2 - d1 - d'2 + d1 = 75λ1 - 57λ2

d2 - d'2 = 75λ1 - 57λ2

We are given;

(λ1 = 656.3 nm) and λ2 = 434.0 nm.

Thus;

d2 - d'2 = 75(656.3) - 57(434)

d2 - d'2 = +24484.5 nm

5 0
2 years ago
The human ear canal is, on average, 2.5cm long and aids in hearing by acting like a resonant cavity that is closed on one end an
Troyanec [42]

Answer:

3400 Hz

Explanation:

We know that

1 cm = 0.01 m

L = Length of the human ear canal = 2.5 cm = 0.025 m

V = Speed of sound = 340 ms⁻¹

f = First resonant frequency

The human ear canal behaves as a closed pipe and for a closed pipe, nth resonant frequency is given as

f = \frac{(2n - 1)V}{4L}

for first resonant frequency, we have n = 1

Inserting the values

f = \frac{(2(1) - 1) 340}{4(0.025)}

f = \frac{340}{4(0.025)}

f = 3400 Hz

4 0
2 years ago
You are in a hot-air balloon that, relative to the ground, has a veloc- ity of 6.0 m/s in a direction due east. You see a hawk m
Ann [662]

Answer:

6.32 m/s 18.43° northeast

Explanation:

We express the velocity of hawk as:

v_{Hawk}=v_{balloon}+v_{HawkRelativetoBalloon}=6 x+2 y

We consider positive x towards east and positive y due north. So the magnitude is simply the square root of the square components:

|v_{hawk}|=\sqrt[]{6^2+2^2}=\sqrt{40}≈6.32 m/s

And the angle with respect to the east should be with:

arctan(\frac{2}{6} )=18.43 \°

8 0
1 year ago
Given that average speed is distance traveled divided by time, determine the values of m and n when the time it takes a beam of
schepotkina [342]
If speed = distance/time , then time = speed/distance.

So...

Speed of light = 3*10^8(m/s)
Average distance from Earth to Sun = 149.6*10^9(m)

Therefore, t=(3*10^8(m/s))/(149.6*10^9(m))

I hope this was a helpful explanation, please reply if you have further questions about the problem.

Good luck!
5 0
1 year ago
Other questions:
  • If steam enters a turbine at 600K and is exhausted at 400K, calculate the efficiency of the engine.
    13·2 answers
  • A 31.0 kg child on a swing reaches a maximum height of 1.92 m above their rest position.
    12·1 answer
  • Samantha wants to study circus performance when she gets to college. She has mastered many physical skills already, but she keep
    6·2 answers
  • A 68 kg hiker walks at 5.0 km/h up a 9% slope. The indicated incline is the ratio of the vertical distance and the horizontal di
    11·1 answer
  • A 0.70-m radius cylindrical region contains a uniform electric field that is parallel to the axis and is increasing at the rate
    11·2 answers
  • main idea which will change if you turn up a radios volume: wave velocity, intensity, pitch, frequency, wavelength, loudness.
    6·1 answer
  • What is the longest wavelength light capable of ionizing a hydrogen atom in the ground state?
    12·1 answer
  • A balloon drifts 140m toward the west in 45s ; then the wind suddenly changes and the balloon flies 90m toward the east in the n
    10·1 answer
  • Kenny and Candy decided to sit on a see-saw while visiting a local play park. Candy, of mass
    5·1 answer
  • A 1.5 volt, AAA cell supplies 750 milliamperes of current through a flashlight bulb for 5.0 minutes, while a 1.5 volt, C cell su
    7·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!