Given that,
Distance in south-west direction = 250 km
Projected angle to east = 60°
East component = ?
since,
cos ∅ = base/hypotenuse
base= hyp * cos ∅
East component = 250 * cos 60°
East component = 125 km
Answer:
a) m = 993 g
b) E = 6.50 × 10¹⁴ J
Explanation:
atomic mass of hydrogen = 1.00794
4 hydrogen atom will make a helium atom = 4 × 1.00794 = 4.03176
we know atomic mass of helium = 4.002602
difference in the atomic mass of helium = 4.03176-4.002602 = 0.029158
fraction of mass lost =
= 0.00723
loss of mass for 1000 g = 1000 × 0.00723 = 7.23
a) mass of helium produced = 1000-7.23 = 993 g (approx.)
b) energy released in the process
E = m c²
E = 0.00723 × (3× 10⁸)²
E = 6.50 × 10¹⁴ J
Answer:
a) the values of the angle α is 45.5°
b) the required magnitude of the vertical force, F is 41 lb
Explanation:
Applying the free equilibrium equation along x-direction
from the diagram
we say
∑Fₓ = 0
Pcosα - 425cos30° = 0
525cosα - 368.06 = 0
cosα = 368.06/525
cosα = 0.701
α = cos⁻¹ (0.701)
α = 45.5°
Also Applying the force equation of motion along y-direction
∑Fₓ = ma
Psinα + F + 425sin30° - 600 = (600/32.2)(1.5)
525sin45.5° + F + 212.5 - 600 = 27.95
374.46 + F + 212.5 - 600 = 27.95
F - 13.04 = 27.95
F = 27.95 + 13.04
F = 40.99 ≈ 41 lb
the answer could be (very basic) since options arent given
When light hits the boundary between two different materials, it can undergo both reflection and refraction.
Reflection is the change in the direction of the
wave that strikes the boundary between two materials.<span> It involves a change in the direction of waves when they clash with an obstacle.
Refraction involves the change in the direction of waves as they move from one medium to </span><span><span>another followed</span></span><span> by a change in speed and wavelength (this second medium should have different permitivity for the light to change its initial properties.)</span>