Answer:
Explanation:
sp² hybridization is found in those compounds having double bond .
Out of the given compounds only C₂H₂Cl₂ has double bond so this compound contains carbon with sp² hybridization .
Rest have sp³ hybridization because they are saturated compounds .
Answer : Option D) The particles move enough that they are not fixed in place, and the liquid can flow.
Explanation : The kinetic energy of the particles are allowed to move freely and are in motion when in the liquid state whereas the intermolecular particles can just flow; as the intermolecular attractions between the particles allows the liquid to flow by giving them a force to flow.
Given :
2NOBr(g) - -> 2NO(g) + Br2(g)
Initial pressure of NOBr , 1 atm .
At equilibrium, the partial pressure of NOBr is 0.82 atm.
To Find :
The equilibrium constant for the reaction .
Solution :
2NOBr(g) - -> 2NO(g) + Br2(g)
t=0 s 1 atm 0 0
1( 1-2x) 2x x
So ,

At equilibrium :
![K_{eq}=\dfrac{[NO]^2[br_2]}{[NOBr]^2}\\\\K_{eq}=\dfrac{0.18^2\times 0.9}{0.82^2}\\\\K_{eq}=0.043\ atm](https://tex.z-dn.net/?f=K_%7Beq%7D%3D%5Cdfrac%7B%5BNO%5D%5E2%5Bbr_2%5D%7D%7B%5BNOBr%5D%5E2%7D%5C%5C%5C%5CK_%7Beq%7D%3D%5Cdfrac%7B0.18%5E2%5Ctimes%200.9%7D%7B0.82%5E2%7D%5C%5C%5C%5CK_%7Beq%7D%3D0.043%5C%20atm)
Hence , this is the required solution .
First convert the amount of grams you have of each substance to moles. Find your limiting reactant by calculating how many grams are needed to complete this reaction. If done correctly, you would see that we need .226 moles of Potassium to complete this reaction. However, we only have .118 moles of Potassium, so K must be our limiting reactant. Then use the moles of K to find out how many moles of K^2S are made. Then convert the amount of moles of K^2S to grams and you should get 10.3 g K^2S
Answer:

Explanation:
In this case, to calculate the <u>heat of solution</u> (KJ/mol) we have to take into account the mass of water, the specific heat of the water and the temperature change, so:


Δ
With this in mind, we can use the <u>equation</u>:

If we plug the values into the equation we will have:


Now, with the mass value (21.5 g) and the molar mass of LiCl (42.39g/mol) we can <u>calculate the moles of LiCl</u>:

Now, in the heat of solution, we have <u>KJ/mol units</u>. Therefore, we have to <u>convert</u> from J to KJ:

Finally, we can <u>divide</u> by the moles of LiCl:

So, <u>for each mole of LiCl, we have 63.09 KJ involved in the dissolution process.</u>
I hope it helps!