Answer:
a. 2-heptanone is more reactive than 4-heptanone
b. chloromethyl phenyl ketone is more reactive than bromomethyl phenyl ketone
Explanation:
The reactivity of the carbonyl compound (ketone ) is affected by the steric effect. The steric effect is a hindrance that occurs in the structure or reactivity of a molecule, which is affected by the physical size and the proximity of the adjacent parts of the molecule.
Between 2-heptanone or 4-heptanone, 2-heptanone is more reactive than 4-heptanone. This is because 2-heptanone is less affected by the steric hindrance, unlike the 4-heptanone.
Similarly, the reactivity of the carbonyl compound (ketone) is also affected by the polarity on the carbon compound, which is associated with how electronegative the substituent attached is to the carbonyl compound. From the periodic table, the electronegativity of the Halogen family decreases down the group. Therefore chlorine is more electronegative than bromine.
As such, chloromethyl phenyl ketone is more reactive than bromomethyl phenyl ketone.
What's the answer? It asked to be 20 characters long so just writing this.
The atom has only one isotope which means 100 % of same atom is present in nature. The atomic mass of an element is the number of times an atom of that element is heavier than an atom of carbon taken as 12. Mass of one atom of that isotope is 9.123 ✕ 10⁻²³ g, so mass of one mole of atom that is Avogadro's number of atom is 6.023 X 10²³ X 9.123 X 10⁻²³ g=54.94 g = 55 g (approximate).
So, the atom having atomic mass 55 will be Cesium (Cs). Only one isotope of Cesium is stable in nature.
Volume of the nitrogen gas = 49.8 L
<u>Explanation:</u>
It is given that the pressure, number of moles and temperature of nitrogen gas, and gas constant value being constant and it is taken as 0.08206 L atm mol⁻¹K⁻¹.
Temperature = T = 75°C = 75 + 273 = 348 K
Pressure = P = 0.992 atm
Number of moles = n = 1.73 moles
We have to use the ideal gas equation, PV = nRT, and rearranging the equation to get Volume in litres.
V = 
= 
= 49.8 L
So the volume of Nitrogen gas = 49.8 L