You have a few steps to solve this one. First, we'll find the molar mass by percentage of each element in the molecule. Then, we'll divide each of those relative masses by the atomic mass of each element. The number of times the mass divides into the relative mass is the number of atoms of that element in the molecule:
C: 284.5 x .76 = 216.22
H: 284.5 x .128= 36.416
O: 284.5 x .112 = 31.864.
Now we divide out each element's atomic mass (from the periodic table). it's okay if they're approximated from the decimal answer.
C: 216.22 ÷ 12.011 ≈ 18
H: 36.416 ÷ 1.008 ≈36
O: 31.864 ÷ 15.999 ≈ 2
Therefore, the molecular formula is C18H36O2.
The empirical formula would be found by dividing out all factors of those subscript numbers. In our case, all of them can be divided by 2. The empirical formula would be C9H18O
Answer:
Maintaining a high starting-material concentration can render this reaction favorable.
Explanation:
A reaction is <em>favorable</em> when <em>ΔG < 0</em> (<em>exergonic</em>). ΔG depends on the temperature and on the reaction of reactants and products as established in the following expression:
ΔG = ΔG° + R.T.lnQ
where,
ΔG° is the standard Gibbs free energy
R is the ideal gas constant
T is the absolute temperature
Q is the reaction quotient
To make ΔG < 0 when ΔG° > 0 we need to make the term R.T.lnQ < 0. Since T is always positive we need lnQ to be negative, what happens when Q < 1. Q < 1 implies the concentration of reactants being greater than the concentration of products, that is, maintaining a high starting-material concentration will make Q < 1.
Given:
Mass, m = 51.1 g
Volume, V = 6.63 cm³
By definition,
Density = Mass/Volume
= (51.1 g)/(6.63 cm³)
= 7.7074 g/cm³
In SI units,
Density = (7.7074 g/cm³)*(10⁻³ kg/g)*(10² cm/m)³
= 7707.4 kg/m³
Answer: 7.707 g/cm³ or 7707.4 kg/m³
Answer:
45.0 L is the volume of gas will the balloon contain at 1.35 atm and 253 K.
Explanation:
Using Ideal gas equation for same mole of gas as
Given ,
V₁ = 25.0 L
V₂ = ?
P₁ = 2575 mm Hg
Also, P (atm) = P (mm Hg) / 760
P₁ = 2575 / 760 atm = 3.39 atm
P₂ = 1.35 atm
T₁ = 353 K
T₂ = 253 K
Using above equation as:

Solving for V₂ , we get:
<u>V₂ = 45.0 L</u>
45.0 L is the volume of gas will the balloon contain at 1.35 atm and 253 K.