Answer:
The answer to your question is: 6 moles of HNO₃
Explanation:
Data
Volume = 25 ml
Concentration = 6 M HNO₃
Diluted 100 ml
Formula
Molarity = # moles / volume
# of moles = Volume x Molarity
Process
# of moles = 0.10 x 6
= 6 moles
PH is calculated using <span>Handerson- Hasselbalch equation,
pH = pKa + log [conjugate base] / [acid]
Conjugate Base = Acetate (CH</span>₃COO⁻)
Acid = Acetic acid (CH₃COOH)
So,
pH = pKa + log [acetate] / [acetic acid]
We are having conc. of acid and acetate but missing with pKa,
pKa is calculated as,
pKa = -log Ka
Putting value of Ka,
pKa = -log 1.76 × 10⁻⁵
pKa = 4.75
Now,
Putting all values in eq. 1,
pH = 4.75 + log [0.172] / [0.818]
pH = 4.072
A significant figure is every symbol that made the number itself.
In this case, the number 40.00 has four figures but only two of them are significant 40, this is because you haven't got any more decimals than the first zero.
If you have a case with zeros in front, you take to the first non zero digits.
For example, 0.071004 you wold express as 0.071 and those 7, and 1 are the significant ones.
Answer:
The properties of liquids are intermediate between those of gases and solids, but are more similar to solids. In contrast to intramolecular forces, such as the covalent bonds that hold atoms together in molecules and polyatomic ions, intermolecular forces hold molecules together in a liquid or solid. Intermolecular forces are generally much weaker than covalent bonds. For example, it requires 927 kJ to overcome the intramolecular forces and break both O–H bonds in 1 mol of water, but it takes only about 41 kJ to overcome the intermolecular attractions and convert 1 mol of liquid water to water vapor at 100°C. (Despite this seemingly low value, the intermolecular forces in liquid water are among the strongest such forces known!) Given the large difference in the strengths of intra- and intermolecular forces, changes between the solid, liquid, and gaseous states almost invariably occur for molecular substances without breaking covalent bonds.
Explanation:
im not sure this is what your looking for but i found this