answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Sidana [21]
2 years ago
15

1. A biker travels at an average speed of 11.1 m/s along a 8900 m

Physics
1 answer:
Karolina [17]2 years ago
4 0

Answer:

Time = 801.802 secs.

Explanation:

Speed can be defined as the rate of change in the magnitude of distance with respect to time. It is a scalar quantity because it only has magnitude but no direction.

Given the following data;

Average speed = 11.1m/s

Time =?

Distance = 8900m

Speed (S) = \frac{distance}{time}

S = \frac{d}{t}

Making time (t) the subject of formula, we have;

Time (t) = \frac{d}{s}

Time (t) = \frac{8900}{11.1}

Time = 801.802 secs.

<em>Hence, the time the biker takes to cover the segment is 801.802 seconds. </em>

You might be interested in
g A cylinder of mass m is free to slide in a vertical tube. The kinetic friction force between the cylinder and the walls of the
sdas [7]

Answer:

The vertical distance is  d = \frac{2}{k} *[mg + f]

Explanation:

From the question we are told that

   The mass of the cylinder is  m

    The kinetic frictional force is  f

Generally from the work energy theorem

    E  =  P +  W_f

Here E the the energy of the spring which is increasing and this is mathematically represented as

       E =  \frac{1}{2} * k  *  d^2

Here k is the spring constant

        P is the potential energy of the cylinder which is mathematically represented as

     P  = mgd

And

     W_f  is the workdone by friction which is mathematically represented as

      W_f  =  f *  d

So

    \frac{1}{2} * k  *  d^2 =  mgd +  f *  d

=>    \frac{1}{2} * k  *  d^2 =  d[mg +  f    ]

=>  \frac{1}{2} * k  *  d =  [mg +  f    ]

=> d = \frac{2}{k} *[mg + f]

5 0
2 years ago
A uniform sphere with mass M and radius R is rotating with angular speed ω1 about a frictionless axle along a diameter of the sp
liq [111]

Answer:

W_2=\sqrt{\frac{3}{5} }W_1

Explanation:

For the first ball, the moment of inertia and the kinetic energy is:

I_1 =\frac{2}{5}MR^2

K_1 = \frac{1}{2}IW_1^2

So, replacing, we get that:

K_1 = \frac{1}{2}(\frac{2}{5}MR^2)W_1^2

At the same way, the moment of inertia and kinetic energy for second ball is:

I_2 =\frac{2}{3}MR^2

K_2 = \frac{1}{2}IW_2^2

So:

K_2 = \frac{1}{2}(\frac{2}{3}MR^2)W_2^2

Then, K_2 is equal to K_1, so:

K_2 = K_1

\frac{1}{2}(\frac{2}{3}MR^2)W_2^2 = \frac{1}{2}(\frac{2}{5}MR^2)W_1^2

\frac{1}{3}MR^2W_2^2 = \frac{1}{5}MR^2W_1^2

\frac{1}{3}W_2^2 = \frac{1}{5}W_1^2

Finally, solving for W_2, we get:

W_2=\sqrt{\frac{3}{5} }W_1

5 0
2 years ago
A 128.0-N carton is pulled up a frictionless baggage ramp inclined at 30.0∘above the horizontal by a rope exerting a 72.0-N pull
Elden [556K]

Answer:

(A) 374.4 J

(B) -332.8 J

(C) 0 J

(D) 41.6 J

(E)  351.8 J

Explanation:

weight of carton (w) = 128 N

angle of inclination (θ) = 30 degrees

force (f) = 72 N

distance (s) = 5.2 m

(A) calculate the work done by the rope

  • work done = force x distance x cos θ
  • since the rope is parallel to the ramp the angle between the rope and

        the ramp θ will be 0

       work done = 72 x 5.2 x cos 0

       work done by the rope = 374.4 J

(B) calculate the work done by gravity

  • the work done by gravity = weight of carton x distance x cos θ
  • The weight of the carton = force exerted by the mass of the carton = m x g
  • the angle between the force exerted by the weight of the carton and the ramp is 120 degrees.

      work done by gravity = 128 x 5.2  x cos 120

      work done by gravity = -332.8 J

(C) find the work done by the normal force acting on the ramp

  • work done by the normal force = force x distance x cos θ
  • the angle between the normal force and the ramp is 90 degrees

       

         work done by the normal force = Fn x distance x cos θ

         work done by the normal force = Fn x 5.2 x cos 90

         work done by the normal force = Fn x 5.2 x 0

         work done by the normal force = 0 J

(D)  what is the net work done ?

  • The net work done is the addition of the work done by the rope,       gravitational force and the normal force

     net work done = 374.4 - 332.8 + 0 =  41.6 J  

(E) what is the work done by the rope when it is inclined at 50 degrees to the horizontal

  • work done by the rope= force x distance x cos θ
  • the angle of inclination will be 50 - 30 = 20 degrees, this is because the ramp is inclined at 30 degrees to the horizontal and the rope is inclined at 50 degrees to the horizontal and it is the angle of inclination of the rope with respect to the ramp we require to get the work done by the rope in pulling the carton on the ramp

work done = 72 x 5.2 x cos 20

work done = 351.8 J

5 0
2 years ago
Differences between Pressure and upthrust​
Angelina_Jolie [31]

Answer:

Pressure is equal to the ratio of thrust to the area in contact. Upthrust is a force exerted by the fluids on an object placed in the fluid . Upthrust acts in upward direction.

4 0
2 years ago
calculate the work done to stretch an elastic string by 40cm if a force of 10N produces an extension of 4cm in it?
Charra [1.4K]
100N is how much work is needed 
4 0
2 years ago
Other questions:
  • How high above the earth's surface is g reduced to 8.80m/^2?
    12·2 answers
  • Suppose you look out the window of a skyscraper and see someone throw a tomato downward from above your window. your window is a
    8·1 answer
  • The frequency of a wave increases. If the speed of the wave remains constant, what happens to the distance between successive cr
    6·1 answer
  • Two blocks, 1 and 2, are connected by a rope R1 of negligible mass. A second rope R2, also of negligible mass, is tied to block
    9·1 answer
  • According to the Revere and Black (2003) article, processes that result in an error probability of 0.000070 should be recognized
    8·1 answer
  • A power plant burns 1000 kg of coal each hour and produces 500 kW of power. Calculate the overall thermal efficiency if each kg
    7·1 answer
  • Consider a simple ideal Rankine cycle with fixed turbine inlet conditions. What is the effect of lowering the condenser pressure
    8·1 answer
  • Bullets from two revolvers are fired with the same velocity. The bullet from gun #1 is twice as heavy as the bullet from gun #2.
    6·1 answer
  • The diagram shows a lever. A bar sits on top of a brown triangle with a black weight at the left end and a finger pushing on the
    7·2 answers
  • You are at a stop light in your car, stuck behind a red light. Just before the light is supposed to change, a fire engine comes
    13·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!