Answer:
Their velocity after the impact is 20.85 m/s.
Explanation:
Given that,
Mass of falcon, 
Mass of dove, 
Initial speed of the falcon, 
Initial speed of the dove, 
We need to find the final velocity after the impact. When the falcon catches the dove, it will becomes the case of inelastic collision. The conservation of momentum will be :

So, their velocity after the impact is 20.85 m/s.
Answer:
THE ANSWER TERMS ARE DEFINED BLOW:-
Explanation:
MOMENTUM- IT IS THE ABILITY TO INCREASE OR DEVELOP CONSTANT FORCE.
KINETIC ENERGY:- IT IS THE ENERGY THAT A PRTICLE POSSES WHEN IT IS ACTUALLY IN MOTION.
POTENTIAL ENERGY:- IT IS THE ENERGY THAT A PARTICLE POSSES WHEN IT ACTUALLY IS IN RESTING STATE.
IN THIS ACIVITY THE SNOWBOARDER IS IN THE MOTION STATE THEREFORE HE POSSES KINETIC ENERGY AND TO MAINTAIN THAT KINEITC ENERG FOR A PERIOD OF TIME,MOMENTUM PLAYS IT'S ROLE.
Answer:
A) 0.0 kJ
Explanation:
Change in the internal energy of the gas is a state function
which means it will not depends on the process but it will depends on the initial and final state
Also we know that internal energy is a function of temperature only
so here the process is given as isothermal process in which temperature will remain constant always
here we know that

now for isothermal process since temperature change is zero
so change in internal energy must be ZERO
The random variable in this experiment is a Continuous random variable.
Option D
<u>Explanation</u>:
The continuous random variable is random variable where the data can take infinite variables. For example random variable is taken for measuring "speed of automobiles" on the highways. The radar instrument depicts time taken by automobile in particular what speed. They are the generalization of discrete random variables not the real numbers as a random data is created. It gives infinite sets of all possible outcomes. It is obvious that outcomes of the instrument depend on some "physical variables" those are not predictable as depends on the situation.