You didn't say so, but we must assume that the "200 km/hr" is
the glider's air-speed, that is, speed relative to the air.
If the air itself is moving at 30 km/hr relative to the ground and
across the glider's direction, then the glider's speed relative to
the ground is
√(200² + 30²)
= √(40,000 + 900)
= √(40,900) = 202.24... km/hr (rounded)
Answer:
(a) k =
(b) τ =
∝
Explanation:
The moment of parallel pipe rotating about it's axis is given by the formula;
I =
---------------------------------1
(a) The kinetic energy of a parallel pipe is also given as;
k =
--------------------------------2
Putting equation 1 into equation 2, we have;
k = 
k =
(b) The angular momentum is given by the formula;
τ = Iw -----------------------3
Putting equation 1 into equation 3, we have
τ = 
But
τ = dτ/dt =
------------------4
where
dw/dt = angular acceleration =∝
Equation 4 becomes;
τ =
∝
<h2>
Volume of vehicle Assembly Building at the Kennedy Space Center in Florida = 3.67 x 10⁹ L</h2>
Explanation:
The Vehicle Assembly Building at the Kennedy Space Center in Florida has a volume of 3,666,500 m³.
Volume = 3,666,500 m³
1 m³ = 1000 L
So volume = 3,666,500 x 1000 = 3666500000 L
Volume of vehicle Assembly Building at the Kennedy Space Center in Florida = 3666500000 L
Volume of vehicle Assembly Building at the Kennedy Space Center in Florida = 3.67 x 10⁹ L
Answer:
The condition necessary for the person to be able to remain stationary in mid-air is that there must be an upward force also referred to as THRUST
Explanation:
Thrust in Physics is defined as the force that propels, forces or pushes the mass of a certain object in a specified or particular direction.
Thrust can defined in the terms of a Jet pack can be defined as the force that is required to propel the mass of a person in an upward direction.
Based on the diagram that we have been shown the question, we can see that water is the fuel used to proper the user or person upwards hence, the jet pack used in the question is an HydroJet pack
The condition necessary for the person to be able to remain stationary in mid-air is that the propelling force called the thrust must be upwards such that it can overcome these 4 things:
a) Gravitational force
b) Mass of the jet pack user
c) Mass of the jet pack itself
d) The water which serves as fuel for the jet pack.
Answer:
Distance covered by the sound in air is 800 meter and the time taken by the sound in water for the same distance is 0.5 seconds.
Explanation:
Given:
Speed of sound in air = 320 m/s
Speed of sound in water = 1600 m/s
Time taken to reach certain distance in air = 2.5 sec
a.
We have to find the distance traveled by sound in air.
Distance = Product of speed and time.
⇒ 
⇒ 
⇒
meters.
b.
Now we have to find how much time the sound will take to travel in water.
⇒ Time = Ratio of distance and speed
⇒ 
⇒
<em> ...distance = 800 m and speed = 1600 m/s</em>
⇒ 
⇒
seconds.
Distance covered by the sound in air is 800 meter and the time taken by the sound in water for the same distance is 0.5 seconds.