Based on Pauling Scale, electro negativity of Cl = 3.2, Na = 0.9 and H = 2.1
Thus, Electronegativity difference in

= 3.2 -3.2 = 0
Electronegativity difference in NaCl = 3.2-0.9 = 2.3
Similarly, Electronegativity difference in HCl = 3.2 - 2.1 = 1.1
Thus, among the listed molecules following is the decreasing order of electronegativity difference: NaCl> HCl >
The unites of measurement in a data table should be shown in the headings of some columns.
The composite material is composed of carbon fiber and epoxy resins. Now, density is an intensive unit. So, to approach this problem, let's assume there is 1 gram of composite material. Thus, mass carbon + mass epoxy = 1 g.
Volume of composite material = 1 g / 1.615 g/cm³ = 0.619 cm³
Volume of carbon fibers = x g / 1.74 g/cm³
Volume of epoxy resin = (1 - x) g / 1.21 g/cm³
a.) V of composite = V of carbon fibers + V of epoxy resin
0.619 = x/1.74 + (1-x)/1.21
Solve for x,
x = 0.824 g carbon fibers
1-x = 0.176 g epoxy resins
Vol % of carbon fibers = [(0.824/1.74) ÷ 0.619]*100 =<em> 76.5%</em>
b.) Weight % of epoxy = 0.176 g epoxy/1 g composite * 100 = <em>17.6%</em>
Weight % of carbon fibers = 0.824 g carbon/1 g composite * 100 = <em>82.4%</em>
Q = mΔT(Cp)
where Q = heat energy in J (joules),
m = mass in g, ΔT = change in temper. (°C),
Cp = heat capacity in J/(g°C)
Water has a higher heat capacity, meaning that once heat energy is absorbed, it holds that heat longer than bread. Also though, a higher heat capacity of water means that it takes more energy to heat it up.
I don't see any specific data listed for this lab??
Guess and check, test, trial and error, completion.