Answer:
Answer:
15.67 seconds
Explanation:
Using first equation of Motion
Final Velocity= Initial Velocity + (Acceleration * Time)
v= u + at
v=3
u=50
a= - 4 (negative acceleration or deceleration)
3= 50 +( -4 * t)
-47/-4 = t
Time = 15.67 seconds
Answer:
The force is unbalanced
Explanation:
After an arrow is shot, the force acting on the arrow is unbalanced. The resulting net force gives the arrow an initial acceleration which wanes with time and the body is brought to rest.
The net force acting on an arrow is not zero and this indicates that the forces acting on the arrow is unbalanced.
If the force is balanced, the arrow is expect to continue in uniform motion but that is not the case as air resistance has massive impact on this body.
Answer:
<u></u>
- <u>1. The potential energy of the swing is the greatest at the position B.</u>
- <u>2. As the swing moves from point B to point A, the kinetic energy is increasing.</u>
Explanation:
Even though the syntax of the text is not completely clear, likely because it accompanies a drawing that is not included, it results clear that the posittion A is where the seat is at the lowest position, and the position B is upper.
The gravitational <em>potential energy </em>is directly proportional to the height of the objects with respect to some reference altitude. Thus, when the seat is at the position A the swing has the smallest potential energy and when the seat is at the <em>position B the swing has the greatest potential energy.</em>
Regarding the forms of energy, as the swing moves from point B to point A, it is going downward, gaining kinetic energy (speed) at the expense of the potential energy (losing altitude). When the seat passes by the position A, the kinetic energy is maximum and the potential energy is miminum. Then the seat starts to gain altitude again, losing the kinetic energy and gaining potential energy, up to it gets to the other end,
Answer:

Explanation:
The electric field produced by a single point charge is given by:

where
k is the Coulomb's constant
q is the charge
r is the distance from the charge
In this problem, we have
E = 1.0 N/C (magnitude of the electric field)
r = 1.0 m (distance from the charge)
Solving the equation for q, we find the charge:
