The work done is the product between the intensity of the force applied F, the amount of the displacement d of the book and the cosine of the angle

between the direction of the force and the direction of the displacement:

In our problem, the student is lifting the book, so he is applying a force directed upward, and the book is moving upward, so F and d are parallel and therefore the angle is zero, so

Therefore, the work done is
Answer:
The displacement of the spring due to weight is 0.043 m
Explanation:
Given :
Mass
Kg
Spring constant 
According to the hooke's law,

Where
force,
displacement
Here,
(
)
N
Now for finding displacement,

Here minus sign only represent the direction so we take magnitude of it.

m
Therefore, the displacement of the spring due to weight is 0.043 m
Answer:
71nC is the total charge of the rod
Explanation:
See attached file
Answer:
The acceleration of the rocket is 10 m/s².
Explanation:
Let the acceleration of the rocket be
m/s².
Given:
Mass of the rocket is, 
Thrust force acting upward is, 
Acceleration due to gravity is, 
Now, force acting in the downward direction is due to the weight of the rocket and is given as:

Now, net force acting on the rocket in upward direction is given as:

Therefore, from Newton's second law, net force acting on the rocket is equal to the product of mass and acceleration.

Therefore, the acceleration of the rocket is 10 m/s².
Period of a simple pendulum = 2π √(L/G)
(25 sec/15) = 2π √(L / 9.8 m/s²)
5/3 sec = 2π √(L/9.8 m/s²)
5 sec / 6π = √ (L/9.8 m/s²)
(5sec · √9.8m/s²) / 6π = √L
Square each side:
(25 s²) · (9.8 m/s²) / 36π² = L
L = (25 · 9.8) / (36 π²) meters
L = 0.69 meter