answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
aev [14]
2 years ago
11

For each of the following compounds, indicate the pH at which 50% of the compound will be in a form that possesses a charge and

at which pH more than 99% of the compound will be in a form that possesses a charge.
ClCH2COOH (pKa = 2.86)
CH3CH2NH+3 (pKa = 10.7)

Express your answer using two decimal places

a. Determine a pH at which 50% of ClCH2COOH will be in a form that possesses a charge.
b. Determine a pH at which pH more than 99% of ClCH2COOH will be in a form that possesses a charge.
c. Determine a pH at which 50% of CH3CH2NH+3 will be in a form that possesses a charge.
d. Determine a pH at which pH more than 99% of CH3CH2NH+3 will be in a form that possesses a charge.
Chemistry
1 answer:
Virty [35]2 years ago
5 0

Answer:

a. 2..86 b. 4.86 c. 10.7 d. 8.7

Explanation:

a. Determine a pH at which 50% of ClCH2COOH will be in a form that possesses a charge.

Using the Henderson-Hasselbalch equation,

pH = pKa + log[A⁻]/[HA]

where [A⁻] = concentration of conjugate base (or charged form) and [HA] = concentration of acid.

At 50% concentration, [A⁻] = [HA] ⇒ [A⁻]/[HA] = 1

So, pH = pKa + log[A⁻]/[HA]

pH = pKa + log1

pH = pKa = 2.86

b. Determine a pH at which pH more than 99% of ClCH2COOH will be in a form that possesses a charge.

Let x be the concentration of the acid. Since 99% of it should possess a charge, the basic concentration is 0.99x while the acidic concentration is remaining 1 % (1 - 0.99)x = 0.01x

Using the Henderson-Hasselbalch equation,

pH = pKa + log[A⁻]/[HA] where [A⁻] = concentration of conjugate base (or charged form) = 0.99x and [HA] = concentration of acid = 0.01x.

pH = pKa + log0.99x/0.01x

pH = pKa + log0.99/0.01

pH = 2.86 + log99

pH = 2.86 + 1.996

pH = 4.856

pH ≅ 4.86

c. Determine a pH at which 50% of CH3CH2NH+3 will be in a form that possesses a charge.

Using the Henderson-Hasselbalch equation,

pH = pKa + log[A⁻]/[HA]

where [A⁻] = concentration of conjugate base and [HA] = concentration of acid.

At 50% concentration, [A⁻] = [HA] ⇒ [A⁻]/[HA] = 1

So, pH = pKa + log[A⁻]/[HA]

pH = pKa + log1

pH = pKa = 10.7

d. Determine a pH at which pH more than 99% of CH3CH2NH+3 will be in a form that possesses a charge.

Let x be the concentration of the acid. Since 99% of it should possess a charge, the basic concentration is 0.01x while the acidic concentration is remaining 99 % (1 - 0.01)x = 0.99x (which possesses the charge).

Using the Henderson-Hasselbalch equation,

pH = pKa + log[A⁻]/[HA] where [A⁻] = concentration of conjugate base = 0.01x and [HA] = concentration of acid = 0.99x.

pH = pKa + log0.01x/0.99x

pH = pKa + log1/99

pH = 10.7 - log99

pH = 10.7 - 1.996

pH = 8.704

pH ≅ 8.7

You might be interested in
Oxygen _____.
Marysya12 [62]
The answer is it breaks down food into energy
Have a Nice day
7 0
2 years ago
Read 2 more answers
0.01 M HCl solution has a pH of 2. Suppose that during the experiment, both the universal pH indicator and the cabbage indicator
NNADVOKAT [17]
It matches the universal pH indicator and is indicating the proper pH
5 0
2 years ago
Read 4 more answers
How many molecules of carbon dioxide are in 243.6 g of carbon dioxide?
german
Hey there ! 

Molar mass carbon dioxide:

CO2 = 44.01 g/mol

1) number of moles :

1 mole CO2 ------------- 44.01 g
(moles CO2) ------------ 243.6 g

moles CO2 = 243.6 * 1 / 44.01

moles CO2 = 243.6 / 44.01

=> 5.535 moles of CO2

Therefore:

1 mole -------------------- 6.02x10²³ molecules
5.535 moles ------------ ( molecules CO2)

molecules CO2 = 5.535 * ( 6.02x10²³) / 1

=> 3.33x10²⁴ molecules of CO2
3 0
2 years ago
A lead cylinder has a mass of 540 grams and a density of 2.70 g/ml. What is its volume
ch4aika [34]
Volume = Mass / Density

Volume = 540g / 2.70 g/ml

Volume = 200 ml 
3 0
2 years ago
Read 2 more answers
Select all that reasons that the reaction contents does not conduct at this low point.
Alexxx [7]

It's all three of the answers

5 0
2 years ago
Other questions:
  • Jim takes 45 seconds to walk 180 meters north to a store what is jims meters per second
    9·2 answers
  • Which of the following describes the effect of boiling and freezing? which of the following describes the effect of boiling and
    6·1 answer
  • Using electron configurations, explain why the halogens readily react with the alkali metals to form salts
    6·1 answer
  • Three 5-l flasks, fixed with pressure gauges and small valves, each contains 4 g of gas at 273 k. flask a contains h2, flask b c
    7·1 answer
  • A 7.50 liter sealed jar at 18 °c contains 0.125 moles of oxygen and 0.125 moles of nitrogen gas. what is the pressure in the con
    9·2 answers
  • Urea is an organic compound widely used as a fertilizer. Its solubility in water allows it to be made into aqueous fertilizer so
    11·1 answer
  • Calculate the molarity of 48.0 mL of 6.00 M H2SO4 diluted to 0.250 L
    8·2 answers
  • Which of the following does NOT involve a change of state? a. pouring water into a vacuum-insulated bottle b. sublimation of dry
    13·1 answer
  • A blue circle labeled proton and A overlaps a pink circle labeled electron and C. The overlap is labeled B. The Venn diagram com
    6·2 answers
  • If you wanted to find a sample of fermium, which has an atomic number 100, where would you look?
    5·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!