answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
frozen [14]
2 years ago
13

Two objects exert a gravitational force on 8 N on one another. What would that force be if the mass of BOTH objects were doubled

?
Physics
1 answer:
seropon [69]2 years ago
4 0
<span>Based on Newton's law of universal gravitation, the equation for the gravitational force exerted by an object on another object is given by:
F = Gm1m2/(r^2)
where G is the universal gravitational constant, F is the gravitational force exerted, m1 is the mass of the first object, m2 is the mass of the second object, and r is the separation distance between the two objects.
If the mass of both objects were doubled, then we would have: m1' * m2' = (2m1) * (2m2) = 4m1m2. Assuming r stays constant (G is a constant so that won't change anyway), then this means that the new force will be 4 times greater, ie 8N * 4 = 32N of gravitational force. </span>
You might be interested in
Ram has power of 550 watt. What does it mean?
WARRIOR [948]
It means you can do 550 Newton Meters of work every second. Power is the rate of doing work, I hope this helps
4 0
2 years ago
This means that the speed at which the bullet travels across Earth's surface (its magnitude of horizontal velocity) does not aff
Dmitry_Shevchenko [17]

Answer: the speed at which it falls toward the Earth.


Explanation:


A bullet travelling across Earth's surface with some horizontal velocity is classical example of projectile motion.


Projectile motion is an idealization of the motion under the action of gravity neglecting the influence of the air (no drag force nor friction).


This  kind of motion is the result of two independent motions: vertical motion and horizontal motion.


The observed net velocity is the vectorial sum of the vertical and horizontal velocities.


The horizontal velocity is constant, since there is not any force acting in the horizontal axis. Thi is, the object, following the first Law of Newton (inertia law) tends to continue in uniform rectilinear movement (with zero acceleration).


The vertical velocity, this is the velocity at which the bullet falls toward the Earth, is influenced (accelerated) by the action of the gravity of the Earth. So, the vertical velocity is accelerated by the pull of the Earth.


Vertical and horizontal velocities are independent of each other, which means that the speed or the magnitude of the horizontal velocity does not affect the speed at which an object (the bullet) falls toward the Earth.

6 0
2 years ago
You need to design a clock that will oscillate at 10 MHz and will spend 75% of each cycle in the high state. You will be using a
Svetllana [295]

Answer:

Hello your question has some missing parts and the required diagram attached below is the missing part and the diagram

Digital circuits require actions to take place at precise times, so they are controlled by a clock that generates a steady sequence of rectangular voltage pulses. One of the most widely

used integrated circuits for creating clock pulses is called a 555 timer.  shows how the timer’s output pulses, oscillating between 0 V and 5 V, are controlled with two resistors and a capacitor. The circuit manufacturer tells users that TH, the time the clock output spends in the high (5V) state, is TH =(R1 + R2)*C*ln(2). Similarly, the time spent in the low (0 V) state is TL = R2*C*ln(2). Design a clock that will oscillate at 10 MHz and will spend 75% of each cycle in the high state. You will be using a 500 pF capacitor. What values do you need to specify for R1 and R2?

ANSWER : R1 = 144.3Ω,   R2 =  72.2 Ω

Explanation:

Frequency = 10 MHz

Time period = 1 / F =  0.1 <em>u </em>s

Duty cycle = 75% = 0.75

Duty cycle can be represented as :   Ton / T

Also: Ton = Th = 0.75 * 0.1 <em>u </em>s  = 75 <em>n</em> s

TL = T - Th = 100 <em>n</em>s - 75 <em>n</em> s = 25 <em>n</em> s

To find the value of R2 we use the equation for  time spent in the low (0 V) state

TL = R2*C*ln(2)

hence R2 = TL / ( C * In 2 )

c = 500 pF

Hence R2 = 25 / ( 500 pF * 0.693 )  = 72.2 Ω

To find the value of R1 we use the equation for the time the clock output spends in the high (5V) state,

Th = (R1 + R2)*C*ln(2)

  from the equation make R1 the subject of the formula

R1 =  (Th - ( R2 * C * In2 )) / (C * In 2)

R1 = ( 75 ns - ( 72.2 * 500 pF * 0.693)) / ( 500 pF * 0.693 )

R1 = ( 75 ns  - ( 25 ns ) / 500 pf * 0.693

     = 144.3Ω

8 0
2 years ago
Corey, whose mass is 95 kg, stands on a bathroom scale in an elevator. The scale reads 850 N for the first 3.0 s after the eleva
lyudmila [28]

Answer:

v₂ = 2.568 m/s

Explanation:

given,

mass of Corey = 95 Kg

reading of sale for first 3 s when elevator start to move = 850 N

scale reading for the next 3.0 s = 930 N

Gravitation force acting =

  F = m g

  F = 95 x 9.8

  F = 931 N

using newtons second law, due to movement of elevator

    F_{net} = m a

 W - N = m a₁

931- 850 = 95 x a₁

    a₁ = 0.852 m/s²

now,

velocity calculation

v₁ = a₁t

v₁ = 0.852 x 3 = 2.557 m/s

now, For second case

931 - 930 = 95 x a₂

a₂ = 0.011 m/s²

now, velocity after 4 s

v₂ = v₁ + a₂ t

v₂ = 2.557+ 0.011 x (4 - 3)

(4-3) because velocity after 3 second is calculate we need to calculate velocity after 4 s from beginning.

v₂ = 2.557 + 0.011

v₂ = 2.568 m/s

velocity of the elevator is equal to v₂ = 2.568 m/s

7 0
2 years ago
A 1.25 in. by 3 in. rectangular steel bar is used as a diagonal tension member in a bridge truss. the diagonal member is 20 ft l
pentagon [3]

Answer:

axial stress in the diagonal bar =36,000 psi

Explanation:

Assuming we have to find axial stress

Given:

width of steel bar: 1.25 in.

height of the steel bar: 3 in

Length of the diagonal member = 20ft

modulus of elasticity E= 30,000,000 psi

strain in the diagonal member ε = 0.001200 in/in

Therefore, axial stress in the diagonal bar σ = E×ε

=  30,000,000 psi×  0.001200 in/in =36,000 psi

5 0
2 years ago
Other questions:
  • 3) A defense football player on one team tackles the other team’s quarterback, who is running down the field. The quarterback is
    7·1 answer
  • A 10-kg dog is running with a speed of 5.0 m/s. what is the minimum work required to stop the dog in 2.40 s?
    10·1 answer
  • A geologist is studying the shore along a river. She finds a pile of rocks at the base of a riverbank. These broken rock pieces
    14·2 answers
  • Suppose you are driving a car and your friend, who is with you in the car, tosses a softball up and down from her point of view.
    7·1 answer
  • Physics students use a spring scale to measure the weight of a piece of lead. The experiment was performed two times: once in th
    15·1 answer
  • According to Archimedes’ principle, the mass of a floating object equals the mass of the fluid displaced by the object. Use this
    13·1 answer
  • A boy throws a 15 kg ball at 4.7 m/s to a 65 kg girl who is stationary and standing on a skateboard. After catching the ball, th
    13·1 answer
  • a rectangular coil of 25 loops is suspended in a field of 0.20wb/m2.the plane of coil is parallel to the direction of the field
    7·1 answer
  • A dog of mass 10 kg sits on a skateboard of mass 2 kg that is initially traveling south at 2 m/s. The dog jumps off with a veloc
    9·1 answer
  • when you drop a pebble from height h, it reaches the ground with kinetic energy k if there is no air resistance. from what heigh
    11·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!