Answer:
see attached
Explanation:
Dimensional analysis is useful whenever dimensions are involved. Unless it is quite clear that all of the problem dimensions are consistent (for example, all speeds in miles per hour, or all angles in degrees), dimensional analysis can be useful for keeping the math straight.
Only units of the same dimensions can be added or subtracted. When numbers are multiplied or divided or raised to a power, dimensional analysis can help ensure that the appropriate operations are being used on appropriate numbers. It can also help ensure that dimensions are being combined properly to give appropriate derived dimensions.
__
Scientific notation is a way of writing very large or very small numbers compactly. It can also help with "order of magnitude" estimates. If an answer using SI prefixes is appropriate, or if a number can be conveniently expressed in standard form, then scientific notation is usually not required.
On the other hand, SI prefixes may not be appropriate in some cases, or a problem may specify that scientific notation be used for expressing results. In those instances, scientific notation should be used.
Answer:
78.46 grams of 2-bromopropane could be prepared from 25.5 g of propene
Explanation:

Moles of propene = 
According to reaction, 1 mole of propene gives 1 mole of propane.
Then 0.6538 moles of bromo-propane will give:

78.46 grams of 2-bromopropane could be prepared from 25.5 g of propene.
Answer:
When the two atoms move towards each other a compound is formed by sharing electron pairs supplied by each of the atoms to enable them have the stable 8 (octet) valency electrons in their outermost shell
Explanation:
The electronic configuration of the given element can be written as follows;
1s²2s²2p⁴
The given electronic configuration is equivalent to that of oxygen, therefore, we have;
The number of electrons in the valence shell = 2 + 4 = 6 electrons
Therefore, each atom requires 2 electrons to complete its 8 (octet) electrons in the outermost shell
When the two atoms move towards each other, they react and combine to form a compound by sharing 4 electrons, 2 from each atom, such that each atom can have an extra 2 electrons in its outermost orbit in the newly formed compound and the stable octet configuration is attained by each of the atoms in the newly formed compound.
Answer:
The answer is: 51.8 g (86% of serving size)
Explanation:
In order to solve the problem, we have to first determine the number of moles there are in 11.0 g of sucrose. Sucrose has a molecular weight of 342 g (we calculate this from the molar mass of the elements : 12 x 12 g/mol C + 22 x 1 g/mol H + 11 x 16 g/mol O). So, we divide the mass (11.0 g) into the molecular weight of sucrose:
11.0 g sucrose x 1 mol/342 g sucrose= 0.032 mol
We have 0.032 mol of sucrose in a serving of 60 g. But we need less moles (0.0278 mol):
0.032 mol ------------ 60 g serving
0.0278 mol------------ x= 0.0278 mol x 60 g serving/0.032 mol
x= 51.8 g
So, lesser than 1 serving of 60 g must be eaten to consume 0.0278 mol os sucrose. Exactly, 51.8 g (which stands for a 86% of the serving size).
Cookware manufacturers who make pans out of steel only because if C-8 is discontinued then people would have no choice but to buy steel pans. The steel pan manufacturers would in return receive a lot of money