Answer:
-154KJ/mol
Explanation:
mole of 100ml sample of 0.2M aqueous HCl = Molarity × volume in Liter
= 0.2 × 100 / 1000 ( 1L = 1000 ml) = 0.02 mol and 0.02 mole of HCl solution require 0.02 mole of ammonia according to the mole ratio in the balanced equation.
Heat loss by the reaction = heat gain by calorimeter = mcΔT + 480 J/K
where m is the mass of water = 100g + 100g = 200g since mass of 100ml of water = 100g and it is in both of them and specific heat capacity of water 4.184 J/gK
heat gain by calorimeter = (4.184 × 200 + 480) × 2.34 = 3081.3 J
ΔH per mole = heat loss / number of mole = 3081.3 / 0.02 = 154065.6 = -154KJ/mol
Answer:
C. 0.04 moles per cubic decimeter.
Explanation:
The molar mass of the Iodine is 253.809 grams per mole and a cubic decimeter equals 1000 cubic centimeters. The concentration of Iodine (
), measured in moles per cubic decimeter, can be determined by the following formula:
(1)
Where:
- Mass of iodine, measured in grams.
- Molar mass of iodine, measured in grams per mol.
- Volume of solution, measured in cubic decimeters.
If we know that
,
and
, then the concentration of iodine in a solution is:


Hence, the correct answer is C.
Explanation:
Half life is simply the amount of time it takes for half of a substance to decompose.
Options;
- Carbon-14 has a half-life of 5,730 years. A 30 gram sample will be 10 grams after 5,730 years. This is incorrect. After 5730 years, 15g of the sample ought to remain.
- Nickel-59 has a half-life of 76,000 years. A sample would go through 3 half-lives in 228,000 years. This is correct. 3 * 76000 = 228,000
- Hafnium-182 has a half-life of 9 million years. A 38 gram sample would be 4.75 grams in 27 million years. This is incorrect. Mass after 3 half lives (27/9) = 9.5 (38 / 2 / 2)
- Iron-60 has a half-life of 1.5 million years. In 6 million years a 40 gram sample would be reduced to 10 grams. This is incorrect. Mass after 4 half lives (6 / 1.5) = 2.5 gram (40 / 2 / 2 /2 / 2)
- Lead-202 has a half-life of 52,500 years. The original sample must have been 120 grams if you have a 60 gram sample after 105,000 years. This is incorrect. Original sampe = 240 gram. So after 2 half lives (105,000/52500), mass left = 60 (240 / 2 /2)
Answer:
0.1M solution of NaOH
Explanation:
1 mole of NaOH - 40g
? moles - 1 g = 1/40 = 0.025 moles.
Molarity of 1.00g of NaOH in 0.25L (250 mL) = no. of moles/volume
= 0.025/0.25
= 0.1M.