Answer: 35*10^3 N/m
Explanation: In order to explain this problem we know that the potential energy for spring is given by:
Up=1/2*k*x^2 where k is the spring constant and x is the streching or compresion position from the equilibrium point for the spring.
We also know that with additional streching of 2 cm of teh spring, the potential energy is 18J. Then it applied another additional streching of 2 cm and the energy is 25J.
Then the difference of energy for both cases is 7 J so:
ΔUp= 1/2*k* (0.02)^2 then
k=2*7/(0.02)^2=35000 N/m
Answer:
230
Explanation:
= Rotational speed = 3600 rad/s
I = Moment of inertia = 6 kgm²
m = Mass of flywheel = 1500 kg
v = Velocity = 15 m/s
The kinetic energy of flywheel is given by

Energy used in one acceleration

Number of accelerations would be given by

So the number of complete accelerations is 230
Answer:
1) Recollapsing universe
2) critical universe
3) Coasting universe
Explanation:
According to the smallest ration (ratio actual mass density to current density) to largest ration, rank of models for expansion of universe are
1) Recollapsing universe -in this, metric expansion of space is reverse and universe recollapses.
2) critical universe - in this, expansion of universe is very low.
3) Coasting universe - in this, expansion of universe is steady and uniform
Answer:
Force must be applied to m₁ to move the group of rocks from the road at 0.250 m/s² = 436 N
Explanation:
Total force required = Mass x Acceleration,
F = ma
Here we need to consider the system as combine, total mass need to be considered.
Total mass, a = m₁+m₂+m₃ = 584 + 838 + 322 = 1744 kg
We need to accelerate the group of rocks from the road at 0.250 m/s²
That is acceleration, a = 0.250 m/s²
Force required, F = ma = 1744 x 0.25 = 436 N
Force must be applied to m₁ to move the group of rocks from the road at 0.250 m/s² = 436 N
The relationship between resistance R and resistivity

is

where L is the length of the wire and A its cross section.
The radius of the wire is half the diameter:

and the cross section is

From the first equation, we can then find the length of the wire when

(copper resistivity:

)