Explanation:
It is given that,
Speed of the jet airplane with respect to air,
If the wind at the airliner’s cruise altitude is blowing at 100 km/h from west to east, 
(A) Let
is the speed of the airliner relative to the ground if the airplane is flying from west to east,

(B) Let
is the speed of the airliner relative to the ground if the airplane is flying from east to west,

Hence, this is the required solution.
The correct answer is 17.24 m/s. You get the answer by subtracting the two heights of the tracks which are 36.5 and 10.8 m, and the answer is 25.7. Since you already know the height at which the kinetic energy will be coming from, you then divide the amount of weight the roller coaster has to the distance it needs to travel in order for you to determine the speed of the car. So that is, 4,357 kg and 25.7 m and the answer is 169 kg/m. Dividing it to the earth's gravity of 9.8 m/s you'll get 17.24 m/s.
Answer:
σ₁ =
C/m²
σ₂ =
C/m²
Explanation:
The given data :-
i) The radius of smaller sphere ( r ) = 5 cm.
ii) The radius of larger sphere ( R ) = 12 cm.
iii) The electric field at of larger sphere ( E₁ ) = 358 kV/m. = 358 * 1000 v/m


Q₁ = 572.8
C
Since the field inside a conductor is zero, therefore electric potential ( V ) is constant.
V = constant
∴

=
C
Surface charge density ( σ₁ ) for large sphere.
Area ( A₁ ) = 4 * π * R² = 4 * 3.14 * 0.12 = 0.180864 m².
σ₁ =
=
=
C/m².
Surface charge density ( σ₂ ) for smaller sphere.
Area ( A₂ ) = 4 * π * r² = 4 * 3.14 * 0.05² =0.0314 m².
σ₂ =
=
=
C/m²
Answer:
Solid
Explanation:
The plasma is the liquid part of blood, it is 90% and accounts for 55% of blood volume. It is what red blood cells, white blood cells, and platelets move around in. These cells remain solid within the plasma. I hoped this helped!
1. In a single atom, no more than 2 electrons can occupy a single orbital? A. True
2. The maximum number of electrons allowed in a p sublevel of the 3rd principal level is?
B.6
3. A neutral atom has a ground state electronic configuration of 1s^2 2s^2. Which of the following statements concerning this atom is/are correct?
B. All of the above.