Ok so this is what we know :
2KClO3 -> 2KCl + 3O2 (Always check if equation is balanced - in this case it is)
4.26moles
So we know that we have 4.26 moles of oxygen (O2). Now lets look at the ratio between KClO3 and O2.
We see that the ratio is 2:3 meaning that we need 2KClO3 in order to produce 3O2.
Therefore divide 4.26 by 3 and then multiply by 2.
4.26/3 = 1.42
1.42 * 2 = 2.84
Now we know that the molarity of KClO3 is 2.84 moles.
Multiply by R.M.M to find how many grams of KClO3 we have.
R.M.M of KClO3
K- 39
Cl- 35.5
3O- 3 * 16 -> 48
---------------------------
<span>122.5
</span>2.84 * 122.5 = 347.9 grams therefore the answer is (a)
348 grams needed of KClO3 to produce 4.26 moles of O2.
Hope this helps :).
Answer:
The molecular formula of cacodyl is C₄H₁₂As₂.
Explanation:
<u>Let's assume we have 1 mol of cacodyl</u>, in that case we'd have 209.96 g of cacodyl and the<u> following masses of its components</u>:
- 209.96 g * 22.88/100 = 48.04 g C
- 209.96 g * 5.76/100 = 12.09 g H
- 209.96 g * 71.36/100 = 149.83 g As
Now we convert those masses into moles:
- 48.04 g C ÷ 12 g/mol = 4.00 mol C
- 12.09 g H ÷ 1 g/mol = 12.09 mol H
- 149.83 g As ÷ 74.92 g/mol = 2.00 mol As
Those amounts of moles represent the amount of each component in 1 mol of cacodyl, thus, the molecular formula of cacodyl is C₄H₁₂As₂.
If volume remains the same while the mass of a substance increases, the density of the substance will increase.
So if the volume remains the same while the mass of a substance decreases, the density of the substance will decrease, too.
Answer:
A) ∆Suniv >0, ∆G<0, T∆Suniv >0.
Explanation:
The connection between entropy and the spontaneity of a reaction is expressed by the <u>second law of thermodynamics</u><u>: The entropy of the universe increases in a spontaneous process and remains unchanged in an equilibrium process</u>.
Mathematically, we can express the second law of thermodynamics as follows:
For a spontaneous process: ΔSuniv = ΔSsys + ΔSsurr > 0
Therefore, the second law of thermodynamics tells us that a spontaneous reaction increases the entropy of the universe; that is, ΔSuniv > 0.
If we want spontaneity expressed only in terms of the properties of the system (ΔHsys and ΔSsys), we use the following equation:
-TΔSuniv = ΔHsys - TΔSsys < 0
That means that T∆Suniv >0.
This equation says that for a process carried out at constant pressure and temperature T, if the changes in enthalpy and entropy of the system are such that <u>ΔHsys - TΔSsys is less than zero, the process must be spontaneous.</u>
Finally, if the change in free energy is less than zero (ΔG<0), the reaction is spontaneous in the forward direction.
Iron doesn't fit because it doesn't have enough atoms or protons in its nucleus so there for it belongs in column 2. <span />