When the reaction equation is:
CaSO3(s) → CaO(s) + SO2(g)
we can see that the molar ratio between CaSO3 & SO2 is 1:1 so, we need to find first the moles SO2.
to get the moles of SO2 we are going to use the ideal gas equation:
PV = nRT
when P is the pressure = 1.1 atm
and V is the volume = 14.5 L
n is the moles' number (which we need to calculate)
R ideal gas constant = 0.0821
and T is the temperature in Kelvin = 12.5 + 273 = 285.5 K
so, by substitution:
1.1 * 14.5 L = n * 0.0821 * 285.5
∴ n = 1.1 * 14.5 / (0.0821*285.5)
= 0.68 moles SO2
∴ moles CaSO3 = 0.68 moles
so we can easily get the mass of CaSO3:
when mass = moles * molar mass
and we know that the molar mass of CaSO3= 40 + 32 + 16 * 3 = 120 g/mol
∴ mass = 0.68 moles* 120 g/mol = 81.6 g
Answer:
C : t-BuOMe
Explanation:
The tert -butanol is a tertiary alcohol and when chloride ion attacks the carbocation, it forms t-BuCl.
The reaction of tert-butyl chloride or t-BuCl ((CH3)3C−Cl) with methanol and MeOH (CH3−OH) gives the product tert-Butyl methyl ether or t-BuOMe (CH3)3C−OCH3:
(CH3)3C−Cl + CH3−OH => (CH3)3C−OCH3 + HCl
Hence, the correct asnwer is C : t-BuOMe
Answer:
The pressure will increase due ot expnasion of gasses in a closed sealed tube tube .
Explanation:
Answer:
x= 138.24 g
Explanation:
We use the avogradro's number
6.023 x 10^23 molecules -> 1 mol C2H8
26.02 x 10^23 molecules -> x
x= (26.02 x 10^23 molecules * 1 mol C2H8 )/6.023 x 10^23 molecules
x= 4.32 mol C2H8
1 mol C2H8 -> 32 g
4.32 mol C2H8 -> x
x= (4.32 mol C2H8 * 32 g)/ 1 mol C2H8
x= 138.24 g
According to the conversation of mass, mass cannot be created or destroyed. This means whatever is done to one side, must be done to the other.
There are 4 Phosphorus atoms on the left, there must be 4 on the right. To do this, you must multiply the P2O3 by 2 to get 4 Phosphorus atoms and 6 Oxygen atoms. Now to balance the Oxygen atoms, you must multiply the oxygen atoms on the left by 3.
1 P4 + 3 O2 —-> 2 P2O3
Lastly, this equation type is synthesis (combination) because two reactants are becoming a single product.