Answer:
Total volume after adding crystal = 26.7 mL
Explanation:
Given data:
Density of crystal = 2.65 g/mL
Mass of sample = 4.46 g
Volume of water = 25.0 mL
Volume after adding crystal = ?
Solution:
First of all we will calculate the volume of crystal.
d = m/v
2.65 g/mL = 4.46 g/ v
v = 4.46 g/2.65 g/mL
v = 1.7 mL
Total volume after adding crystal = Volume of water + Volume of metal
Total volume after adding crystal = 25.0 mL + 1.7 mL
Total volume after adding crystal = 26.7 mL
Answer:
The pH of the solution is 8.
Explanation:
To which options are correct, let us determine the concentration of the hydroxide ion, [OH-] and the pH of the solution. This is illustrated below:
1. The concentration of the hydroxide ion, [OH-] can be obtained as follow:
pOH = –Log [OH-]
pOH = 6
6 = –Log [OH-]
–6 = Log [OH-]
[OH-] = Antilog (–6)
[OH-] = 1x10^–6 mol/L
2. The pH of the solution can be obtained as follow:
pH + pOH = 14
pOH = 6
pH + 6 = 14
pH = 14 – 6
pH = 8.
From the calculations made above,
[OH-] = 1x10^–6 mol/L
pH = 8.
Therefore, the correct answer is:
The pH of the solution is 8
Answer:
Explanation:
N₂ + 3H₂ = 2 NH₃
1 vol 2 vol
786 liters 1572 liters
786 liters of dinitrogen will result in the production of 1572 liters of ammonia
volume of ammonia V₁ = 1572 liters
temperature T₁ = 222 + 273 = 495 K
pressure = .35 atm
We shall find this volume at NTP
volume V₂ = ?
pressure = 1 atm
temperature T₂ = 273


liter .
mol weight of ammonia = 17
At NTP mass of 22.4 liter of ammonia will have mass of 17 gm
mass of 303.44 liter of ammonia will be equal to (303.44 x 17) / 22.4 gm
= 230.28 gm
=.23 kg / sec .
Rate of production of ammonia = .23 kg /s .
<u>Answer:</u> The enthalpy of the reaction for the production of
is coming out to be -74.9 kJ
<u>Explanation:</u>
Enthalpy change is defined as the difference in enthalpies of all the product and the reactants each multiplied with their respective number of moles. It is represented as 
The equation used to calculate enthalpy change is of a reaction is:
![\Delta H^o_{rxn}=\sum [n\times \Delta H^o_f_{(product)}]-\sum [n\times \Delta H^o_f_{(reactant)}]](https://tex.z-dn.net/?f=%5CDelta%20H%5Eo_%7Brxn%7D%3D%5Csum%20%5Bn%5Ctimes%20%5CDelta%20H%5Eo_f_%7B%28product%29%7D%5D-%5Csum%20%5Bn%5Ctimes%20%5CDelta%20H%5Eo_f_%7B%28reactant%29%7D%5D)
For the given chemical reaction:

The equation for the enthalpy change of the above reaction is:
![\Delta H^o_{rxn}=[(1\times \Delta H^o_f_{(CH_4(g))})]-[(1\times \Delta H^o_f_{(C(s))})+(2\times \Delta H^o_f_{(H_2(g))})]](https://tex.z-dn.net/?f=%5CDelta%20H%5Eo_%7Brxn%7D%3D%5B%281%5Ctimes%20%5CDelta%20H%5Eo_f_%7B%28CH_4%28g%29%29%7D%29%5D-%5B%281%5Ctimes%20%5CDelta%20H%5Eo_f_%7B%28C%28s%29%29%7D%29%2B%282%5Ctimes%20%5CDelta%20H%5Eo_f_%7B%28H_2%28g%29%29%7D%29%5D)
We are given:

Putting values in above equation, we get:
![\Delta H^o_{rxn}=[(1\times (-74.9))]-[1\times 0)+(2\times 0)]\\\\\Delta H^o_{rxn}=-74.9kJ](https://tex.z-dn.net/?f=%5CDelta%20H%5Eo_%7Brxn%7D%3D%5B%281%5Ctimes%20%28-74.9%29%29%5D-%5B1%5Ctimes%200%29%2B%282%5Ctimes%200%29%5D%5C%5C%5C%5C%5CDelta%20H%5Eo_%7Brxn%7D%3D-74.9kJ)
Hence, the enthalpy of the reaction for the production of
is coming out to be -74.9 kJ
Mass of the gas m = 1.66
The calculated temperature T = 273 + 20 = 293
We have to calculate molar mass to determine the gas
Molar Mass = mRT / PV
M = (1.66 x 8.314 x 293) / (101.3 x 1000 x 0.001)
M = 4043.76 / 101.3 = 39.92 g/mol
So this gas has to be Argon Ar based on the molar mass.