Answer with Explanation:
We are given that


Charge on proton,q=
a.We have to find the electric potential of the proton at the position of the electron.
We know that the electric potential

Where 


B.Potential energy of electron,U=
Where
Charge on electron
=Charge on proton
Using the formula


Correct option: A
An object remains at rest until a force acts on it.
As the water moves faster, it applies greater force on the sediment, which over comes the frictional forces between the bed and the sediment. So, when the river flows faster, more and larger sediment particles are carried away. When the flow slows down, the river couldn't apply enough force on the larger sediments which can overcome the frictional force between the sediment and the river bed. So, the net force on the heavier particles become zero. Hence, the heavier particles of the load will settle out.
Answer:
To calculate the age of a piece of bone
Explanation:
Carbon 14 is an isotope of carbon that is unstable and decays into Nitrogen 14 by emitting an electron. The decay rate of radioactive material is normally expressed in terms of its "half-life" (the time required by half the radioactive nuclei of a sample to undergo radioactive decay). The nice thing about carbon 14 is that its "half-life" is about 5730 years, which gives a nice reference to measure the age of fossils that are some thousand years old.
Carbon 14 dating is used to determine the age of objects that have been living organisms long ago. They measure how much carbon 14 is left in the object after years of decaying without having exchange with the ambient via respiration, ingestion, absorption, etc. and therefore having renewed the normal amount of carbon 14 that is in the ambient.
A rock is not a living organism, so its age cannot be determined by carbon 14 dating.
Answer: 1 m/s
Explanation:
We have an object whose position
is given by a vector, where the components X and Y are identified by the unit vectors
and
(where each unit vector is defined to have a magnitude of exactly one):
![r=[2 m + (2 m/s) t] i + [3 m - (1 m/s^{2})t^{2}] j](https://tex.z-dn.net/?f=r%3D%5B2%20m%20%2B%20%282%20m%2Fs%29%20t%5D%20i%20%2B%20%5B3%20m%20-%20%281%20m%2Fs%5E%7B2%7D%29t%5E%7B2%7D%5D%20j)
On the other hand, velocity is defined as the variation of the position in time:

This means we have to derive
:
![\frac{dr}{dt}=\frac{d}{dt}[2 m + (2 m/s) t] i + \frac{d}{dt}[3 m - (1 m/s^{2})t^{2}] j](https://tex.z-dn.net/?f=%5Cfrac%7Bdr%7D%7Bdt%7D%3D%5Cfrac%7Bd%7D%7Bdt%7D%5B2%20m%20%2B%20%282%20m%2Fs%29%20t%5D%20i%20%2B%20%5Cfrac%7Bd%7D%7Bdt%7D%5B3%20m%20-%20%281%20m%2Fs%5E%7B2%7D%29t%5E%7B2%7D%5D%20j)
This is the velocity vector
And when
the velocity vector is:

This is the velocity vector at 2 seconds
However, the solution is not complete yet, we have to find the module of this velocity vector, which is the speed
:


Finally:
This is the speed of the object at 2 seconds