W = 1/2k*x^2.
k = spring constant = 2500 n/m.
x = distance = 4 cm = 0.04m (convert to same units).
W = 1/2(2500)(0.04)^2 = 2J.
Answer:
1.6 s
Explanation:
To find the time in which the potential difference of the inductor reaches 24V you use the following formula:

V_o: initial voltage = 60V
R: resistance = 24-Ω
L: inductance = 42H
V_L: final voltage = 24 V
You first use properties of the logarithms to get time t, next, replace the values of the parameter:

hence, after 1.6s the inductor will have a potential difference of 24V
The "i" component of a vector is in the x-direction. Therefore, the x-component is 3 m/s.
<span>65W * 8h * 3600s/h = 1.9e6 J = 447 Cal </span>
Answer:
27 °C
Explanation:
BY the statement of the question it is clear that it is about an ideal gas - and hence if change in KE is about zero - then there will be no change of temperature.
So, answer is 27 °C