<span>1.5 minutes per rotation.
The formula for centripetal force is
A = v^2/r
where
A = acceleration
v = velocity
r = radius
So let's substitute the known values and solve for v. So
F = v^2/r
0.98 m/s^2 = v^2/200 m
196 m^2/s^2 = v^2
14 m/s = v
So we need a velocity of 14 m/s. Let's calculate how fast the station needs to spin.
Its circumference is 2*pi*r, so
C = 2 * 3.14159 * 200 m
C = 1256.636 m
And we need a velocity of 14 m/s, so
1256.636 m / 14 m/s = 89.75971429 s
Rounding to 2 significant digits gives us a rotational period of 90 seconds, or 1.5 minutes.</span>
Answer:
1,520.00 calories
Explanation:
Water molecules are linked by hydrogen bonds that require a lot of heat (energy) to break, which is released when the temperature drops. That energy is called specific heat or thermal capacity (ĉ) when it is enough to change the temperature of 1g of the substance (in this case water) by 1°C. Water ĉ equals 1 cal/(g.°C).
Given that ĉ = Q / (m.ΔT),
where Q= calories transferred between the system and its environment or another system (unity: calorie or cal) (what we are trying to find out),
m= mass of the substance (unity: grams or g), and
ΔT= difference of temperature (unity: Celsius degrees or °C); and
m= 95g and ΔT= 16°C:
Q= 1 cal/(g.°C).95g.16°C =<u> 1,520.00 cal
</u>
Answer:
If they are metallic spheres they are connected to earth and a charged body approaches
non- metallic (insulating) spheres in this case are charged by rubbing
Explanation:
For fillers, there are two fundamental methods, depending on the type of material.
If they are metallic spheres, they are connected to earth and a charged body approaches, this induces a charge of opposite sign and of equal magnitude, then it removes the contact to earth and the sphere is charged.
If the non- metallic (insulating) spheres in this case are charged by rubbing with some material or touching with another charged material, in this case the sphere takes half the charge and when separated each sphere has half the charge and with equal sign.
Answer:
Where is the text?
Explanation:
If you refer to the short sentence you wrote as text, I believe the answer is probably the word "crashes" because it shows how the momentum was transferred.
Answer:
It will take 4 sec rock to comes its original point
Explanation:
It is given that the rock comes to its original point
So displacement S = 0 m
Initial velocity u = 19.6 m/sec
Acceleration due to gravity 
According to second equation of motion 


t = 4 sec