-OH is elctron donating -C=-N is electron withdrawing -O-CO-CH3 is electron withdrawing -N(CH3)2 is electron donating -C(CH3)3 is electron donating -CO-O-CH3 is electron withdrawing -CH(CH3)2 is electron donating -NO2 is electrong withdrawing -CH2
<span>This is due to the fact that the air pressure in that certain section of Earth’s atmosphere decreased. As density of gas particles decreases as air pressure decreases. Therefore, density of gas particles and air pressure have a direct relationship. An increase in air pressure would then effect to an increase in gas particles. </span>
Answer:Graphite has a giant covalent structure in which: each carbon atom is joined to three other carbon atoms by covalent bonds.
Here we have to get the moles of hydrogen (H₂) consumed to form water (H₂O) from 1.57 moles of oxygen (O₂)
In this process 3.14 moles of H₂ will be consumed.
The balanced reaction between oxygen (O₂) and hydrogen (H₂); both of which are in gaseous state to form water, which is liquid in nature can be written as-
2H₂ (g) + O₂ (g) = 2H₂O (l).
Thus form the equation we can see that 1 mole of oxygen reacts with 2 moles of hydrogen to form 2 moles of water.
So, 1.57 moles of oxygen will consume (1.57×2) = 3.14 moles of hydrogen to form water.
It seems that you have missed the necessary options for us to answer this question, but anyway, here is the answer. At STP graphite and diamond are two solid forms of carbon, the statement that explains why these two forms of carbon differ in hardness is this: <span>Graphite and diamond have different molecular structures. Hope this helps.</span>