answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
kotykmax [81]
2 years ago
4

Which are examples of resonance? Check all that apply.

Physics
2 answers:
faltersainse [42]2 years ago
4 0

Answer: The correct options are:

               A note being played on a saxophone

               An opera singer breaking glass with her voice a person pushing

               A swing at the rate it naturally oscillates back and forth

Explanation:

Resonance is a phenomenon which occurs when the applied frequency on the object is equal to its natural frequency.

When resonance occurs the amplitude of the vibrating object becomes large.

In the given options, the examples of the resonance are as follows:

"an opera singer breaking  a glass with her voice a person pushing": Here, the resonance will occur due to which the glass will break. The applied frequency of the voice of a person on the glass matches with the natural frequency of the glass.

"a note being played on a saxophone": Here, the resonance will occur. The sound energy is produced by saxophone. The air is blown through mouthpiece in it. It causes reed to vibrate rapidly against mouthpiece. Then, air moves through it. Then, the sound is amplified until it escapes through open tone holes.

"swing at the rate it naturally oscillates back and forth": when the applied frequency on the swing matches with the natural frequency of swing. The amplitude of the swing will increase. Here, the resonance will occur.

Sauron [17]2 years ago
3 0

a note being played on a saxophone

an opera singer breaking a glass with her voice

a person pushing a swing at the rate it naturally oscillates back and forth

You might be interested in
A gold puck has a mass of 12 kg and a velocity of 5i – 4j m/s prior to a collision with a stationary blue puck whose mass is 18
Ugo [173]

Answer:

Explanation:D

6 0
2 years ago
Emmy kicks a soccer ball up at an angle of 45° over a level field. She watches the ball's trajectory and notices that it lands,
Elenna [48]

Let u be the initial velocity of the soccer ball at an angle of inclination of \theta_0 with the positive x-axis.

Given that:

\theta_0=45^{\circ}

The horizontal distance covered by the projectile=20 m

Time of flight, t_f=2 seconds

Acceleration due to gravity, g= 10 m/s^2 downward.

As "north" and "up" as the positive x ‑ and y ‑directions, respectively.

So, g= -10 m/s^2

As the acceleration due to gravity is in the vertical direction, so the horizontal component of the initial velocity remains unchanged.

The x-component of the initial velocity, u_x=u\cos\theta_0.

The horizontal distance covered by the projectile = u_x\times t_f

\Rightarrow u_x\times t_f=20

\Rightarrow u_x\times 2=20

\Rightarrow u_x=10 m/s

So, the horizontal component of the velocity is 10 m/s which is constant and the graph has been shown in the figure (i).

Now,  u\cos(45^{\circ})=10 [as u_x=u\cos\theta_0]

\Rightarrow u=10\sqrt{2} m/s.

The vertical component of the initial velocity,

u_y= u\sin\theta_0

\Rightarrow u_y=10\sqrt{2}\sin(45^{\circ})

\Rightarrow u_y=10 m/s

Let v be the vertical component of the velocity at any time instant t.

From the equation of motion,

v=u+at

where u: initial velocity, v: final velocity, a: constant acceleration, and t: time taken to change the velocity from u to v.

In this case, we have u=u_y, a= -10 m/s^2.

So at any time instant, t.

v=u_y+(-10)t

\Rightarrow v=10-10t

The vertical component of the velocity, v, is the function of time and related as v=10-10t.

This is a linear equation.

At 2 second, the vertical component of the velocity

v=10-10x2=-10 m/s.

The graph has been shown in figure (ii).

7 0
2 years ago
Two convex thin lenses with focal lengths 10.0 cm and 20.0 cm are aligned on a common axis, running left to right, the 10-cm len
love history [14]

Answer:

(c) +6.67

Explanation:

f1 = 10 cm

f2 = 20 cm

u = Object distance = 15 cm

Distance between lenses = 20 cm

For first lens image distance

\frac{1}{f}=\frac{1}{u}+\frac{1}{v}\\\Rightarrow \frac{1}{f}-\frac{1}{u}=\frac{1}{v}\\\Rightarrow \frac{1}{v}=\frac{1}{10}-\frac{1}{15}\\\Rightarrow \frac{1}{v}=\frac{1}{30}\\\Rightarrow v=30\ cm

Distance from second lens is 10 cm to the right

\frac{1}{f}=\frac{1}{u}+\frac{1}{v}\\\Rightarrow \frac{1}{f}-\frac{1}{u}=\frac{1}{v}\\\Rightarrow \frac{1}{v}=\frac{1}{20}-\frac{1}{-10}\\\Rightarrow \frac{1}{v}=\frac{3}{20}\\\Rightarrow v=6.67\ cm

The final image will appear as +6.67 cm

3 0
2 years ago
A 4.0-m-diameter playground merry-go-round, with a moment of inertia of 350 kg⋅m2 is freely rotating with an angular velocity of
Flauer [41]

Answer:

v = 4.375\,\frac{m}{s}

Explanation:

The situation of the system Ryan - merry-go-round is modelled after the Principle of the Angular Momentum Conservation:

(350\,kg\cdot m^{2})\cdot (1.5\,\frac{rad}{s} ) - (2\,m)\cdot (60\,kg)\cdot v = 0\,kg\cdot \frac{m^{2}}{s}

The initial speed of Ryan is:

v = 4.375\,\frac{m}{s}

5 0
2 years ago
Read 2 more answers
Floor lamps usually have a base with large inertia, while the long body and top have much less inertia. Part A If you want to sh
Novay_Z [31]

Answer:

When a an object is been rotated its resistance capacity to that rotational force is know as rotational inertia  and this mathematically given as

          I = mr^2

   Where m is the mass

                r is the rotation radius

For the spinning of the lamp as a baton to work the location of the center of mass of the floor lamp needs to be located

This is more likely to be located closer to base of the lamp as compared to the top, so success of spinning a floor lamp like a baton is highly likely if the lamp is grabbed closer to the base because that is where the position of its center of mass is likely to be.

Explanation:

5 0
2 years ago
Other questions:
  • A 5 inch tall balloon shoot doubles in height every 3 days. if the equation y=ab^x, where is x is the number of doubling periods
    10·1 answer
  • Raphael refers to a wave by noting its wavelength. lucinda refers to a wave by noting its frequency. which student is correct an
    15·1 answer
  • Keisha finds instructions for a demonstration on gas laws. 1. Place a small marshmallow in a large plastic syringe. 2. Cap the s
    15·2 answers
  • Moving water, like that of a river, carries sediment as it moves along its bed. The faster the water flows, the more sediment th
    10·2 answers
  • Suppose you are myopic (nearsighted). You can clearly focus on objects that are as far away as 52.5 cm away. You can clearly foc
    10·1 answer
  • A 1.0-m-diameter vat of liquid is 2.0 m deep. The pressure at the bottom of the vat is 1.3 atm. What is the mass of the liquid i
    6·1 answer
  • A low-pressure sodium vapor lamp whose wavelength is 5.89 x 10−7 m passes through double-slits that are 6.7 x 10−4 m apart and p
    10·1 answer
  • Greg walks on a straight road from his home to a convenience store 3.0 km away with a speed of 6.0 km/h. On reaching the store h
    5·2 answers
  • The drawing shows three identical springs hanging from the ceiling. Nothing is attached to the first spring, whereas a 4.50-N bl
    6·1 answer
  • Starting at t = 0 a net external force in the +x-direction is applied to an object that has mass 5.00 kg. A graph of the force a
    7·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!