Answer:
a = 0.5 m/s²
Explanation:
Applying the definition of angular acceleration, as the rate of change of the angular acceleration, and as the seats begin from rest, we can get the value of the angular acceleration, as follows:
ωf = ω₀ + α*t
⇒ ωf = α*t ⇒ α =
= 
The angular velocity, and the linear speed, are related by the following expression:
v = ω*r
Applying the definition of linear acceleration (tangential acceleration in this case) and angular acceleration, we can find a similar relationship between the tangential and angular acceleration, as follows:
a = α*r⇒ a = 0.067 rad/sec²*7.5 m = 0.5 m/s²
Answer:
57.6Joules
Explanation:
Rotational kinetic energy of a body can be determined using the expression
Rotational kinetic energy = 1/2Iω²where;
I is the moment of inertia around axis of rotation. = 5kgm/s²
ω is the angular velocity = ?
Note that torque (T) = I¶ where;
¶ is the angular acceleration.
I is the moment of inertia
¶ = T/I
¶ = 3.0/5.0
¶ = 0.6rad/s²
Angular acceleration (¶) = ∆ω/∆t
∆ω = ¶∆t
ω = 0.6×8
ω = 4.8rad/s
Therefore, rotational kinetic energy = 1/2×5×4.8²
= 5×4.8×2.4
= 57.6Joules
Let
be the direction the swimmer must swim relative to east. Then her velocity relative to the water is

The current has velocity vector (relative to the Earth)

The swimmer's resultant velocity (her velocity relative to the Earth) is then


We want the resultant vector to be pointing straight north, which means its horizontal component must be 0:

which is approximately 41º west of north.
Body waves
Explanation:
A shear wave(S-wave) is a type of seismic body waves that shakes the ground back and forth perpendicular to the direction the wave is moving.
- Seismic waves are elastic waves usually generated when there is a disturbance within the earth.
- There are two types of seismic waves:
Surface waves
Body waves
- Body waves travel within the earth and they cause disturbances there. P and S waves are the two types of body waves that we have.
- Surface waves travels on the earth surface. They are the love and rayleigh waves. They are the ones that cause destruction on the earth surface during an earthquake.
Learn more:
Earthquake brainly.com/question/6520403
#learnwithBrainly
First make sure you draw a force diagram. You should have Fn going up, Fg going down, Ff going left and another Fn going diagonally down to the right. The angle of the diagonal Fn (we'll call it Fn2) is 35° and Fn2 itself is 80N. Fn2 can be divided into two forces: Fn2x which is horizontal, and Fn2y which is vertical. Right now we only care about Fn2y.
To solve for Fn2y we use what we're given and some trig. Drawing out the actual force of Fn2 along with Fn2x and Fn2y we can see it makes a right triangle, with 80 as the hypotenuse. We want to solve for Fn2y which is the opposite side, so Sin(35)=y/80. Fn2y= 80sin35 = 45.89N
Next we solve for Fg. To do this we use Fg= 9.8 * m. Mass = 30kg, so Fg = 9.8 * 30 = 294N.
Since the chair isn't moving up or down, we can set our equation equal to zero. The net force equation in the vertical direction will be Fn + Fn2y -Fg = 0. If we plug in what we know, we get Fn + 45.89 -294 = 0. Then solve this algebraically.
Fn +45.89 -294 = 0
Fn +45.89 = 294
Fn = 248.11 N
You'll get a more accurate answer if you don't round Fn2y when solving for it, it would be something along the lines of 45.88611 etc