Answer:
The final volume of the sample of gas
= 0.000151 
Explanation:
Initial volume
= 200 ml = 0.0002
Initial temperature
= 296 K
Initial pressure
= 101.3 K pa
Final temperature
= 336 K
Final pressure
= K pa
Relation between P , V & T is given by

Put all the values in the above equation we get

= 0.000151 
This is the final volume of the sample of gas.
<span>According to my knowledge, I feel the answer is -
Particles that struck the center of the atom were repelled.
Hope this helps!
</span>
the balanced chemical equation for the decomposition of H₂O₂ is as follows
2H₂O₂ ---> 2H₂O + O₂
stoichiometry of H₂O₂ to O₂ is 2:1
the number of moles of H₂O₂ decomposed is - 0.250 L x 3.00 mol/L = 0.75 mol
according to stoichiometry the number of O₂ moles is half the number of H₂O₂ moles decomposed
number of moles of O₂ - 0.75 mol / 2 = 0.375 mol
apply the ideal gas law equation to find the volume
PV = nRT
where P - standard pressure - 10⁵ Pa
V - volume
n - number of moles 0.375 mol
R - universal gas constant - 8.314 Jmol⁻¹K⁻¹
T - standard temperature - 273 K
substituting the values in the equation
10⁵ Pa x V = 0.375 mol x 8.314 Jmol⁻¹K⁻¹ x 273 K
V = 8.5 L
volume of O₂ gas is 8.5 L
Answer:
Explanation:
For a chemical reaction, the enthalpy of reaction (ΔHrxn) is … ... to increase the temperature of 1 g of a substance by 1°C; its units are thus J/(g•°C). ... Both Equations 12.3.7 and 12.3.8 are under constant pressure (which ... The specific heat of water is 4.184 J/g °C (Table 12.3.1), so to heat 1 g of water by 1 ..
Mole ratio for the reaction is 1:1
no of moles in NaOH that reacted= 1*21.17/1000=0.02117mols
molarity of HCl=0.02117*10/1000
=2.117M