Answer:
The kinetic energy INCREASES as the roller coaster goes downhill.
Kinetic energy is greatest at POINT 2
Potential energy is greatest at POINT 1
Kinetic energy is decreasing while potential energy is increasing between points 3 AND 4
Which chart comes closest to the relationship between kinetic energy and potential energy at point 6 - CHART OF ANY POINT IN THE SAME HEIGHT AS OF 6
Explanation:
⇒As the potential energy increases , kinetic energy decreases.
⇒Potential energy here is gravitational potential energy.
⇒Thus, more we move away from the centre of the earth , more will be the gravitational potential energy or decrease in kinetic energy
If we assume also that the temperature of the air does not change, we can use Boyle's Law:
p₁V₁ = p₂V₂
Now, we know:
p₁ = 100kPa
V₂ = 100cm³ (the volume of the tyre)
V₁ = 120cm³ (becuse the air is contained inside the tyre AND the pump)
We can solve for p₂:
p₂ = (p₁V₁)/V₂
= (100×120)/100
= 120kPa
Therefore your answer is: 120kPa
Answer:
A) 
B) 
Explanation:
Given:
- temperature of air,

- temperature of lungs,

- specific Heat exchanged from the lungs ,

- specific heat of air,

- mass of 1 L air,

- breath rate,

A)
Now,
amount of heat needed to warm the air of lungs to the body temperature:



B)
Amount of heat lost per hour:
<u>No. of breaths per hour:</u>



<u>Now the total loss of energy in 1 hr.:</u>



Answer:
As block 1 moves from point A to point B, the work done by gravity on block 2 is equal to the change in the kinetic energy of the two-block system.
Explanation:
As block 2 goes down , work is done by gravity on block 2 . This is converted
into kinetic energy of block 1 and block 2 . Work done by gravity is mgh which can be measured easily . kinetic energy of both the blocks can also be measured.
Answer:
Hello there Dude answer is B :D hope it helped mark me brainliest.