answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Murljashka [212]
2 years ago
13

A stationary particle of charge q = 2.1 × 10-8 c is placed in a laser beam (an electromagnetic wave) whose intensity is 2.9 × 10

3 w/m2. determine the maximum magnitude of the (a) electric and (b) magnetic forces exerted on the charge. if the charge is moving at a speed of 3.7 × 104 m/s perpendicular to the magnetic field of the electromagnetic wave, find the maximum magnitudes of the (c) electric and (d) magnetic forces exerted on the particle.
Physics
1 answer:
alisha [4.7K]2 years ago
5 0
(a) The intensity of the electromagnetic wave is related to the amplitude of the electric field by
I= \frac{1}{2} c \epsilon_0 E^2
where
I is the intensity
c is the speed of light
\epsilon_0 is the electric permittivity
E is the amplitude of the electric field

By substituting the numbers of the problem and re-arranging the equation, we can find E:
E= \frac{2 I}{c \epsilon_0} = \frac{2 ( 2.9 \cdot 10^3 Wm^{-2})}{(3 \cdot 10^8 m/s)(8.85 \cdot 10^{-12} Fm^{-1})} =2.2 \cdot 10^6 N/C

Now that we have the intensity of the electric field, we can calculate the electric force on the charge:
F=qE=(2.1 \cdot 10^{-8} C)(2.2 \cdot 10^6 N/C)=0.046 N

(b) We can calculate the amplitude of the magnetic field starting from the amplitude of the electric field:
B= \frac{E}{c}= \frac{2.2 \cdot 10^6 N/C}{3 \cdot 10^8 m/s}=7.3 \cdot 10^{-3} T

The magnetic force is given by
F=qvB \sin \theta
where v is the particle's speed, B the magnetic field intensity and \theta the angle between B and v.
In this case the charge is stationary, so v=0, and so the magnetic force is zero: F=0.

(c) The electric force has not changed compared to point (a), because it does not depend on the speed of the particle, so we have again F=0.046 N.

(d) This time, the particle is moving with speed v=3.7 \cdot 10^4 m/s, in a direction perpendicular to the magnetic field (so, the angle \theta is 90^{\circ}), and so by using the intensity of the magnetic field we found in point (b), we can calculate the magnetic force on the particle:
F=qvB \sin \theta = (2.1 \cdot 10^{-8}C)(3.7 \cdot 10^4 m/s)(7.3 \cdot 10^{-3} T)(\sin 90^{\circ} )=
=5.7 \cdot 10^{-6} N
You might be interested in
James Cameron piloted a submersible craft to the bottom of the Challenger Deep, the deepest point on the ocean's floor, 11,000 m
Over [174]

Answer:

4.1\cdot 10^8 N

Explanation:

First of all, we need to find the pressure exerted on the sphere, which is given by:

p=p_0 + \rho g h

where

p_0 =1.01\cdot 10^5 Pa is the atmospheric pressure

\rho = 1000 kg/m^3 is the water density

g=9.8 m/s^2 is the gravitational acceleration

h=11,000 m is the depth

Substituting,

p=1.01\cdot 10^5 Pa + (1000 kg/m^3)(9.8 m/s^2)(11,000 m)=1.08\cdot 10^8 Pa

The radius of the sphere is r = d/2= 1.1 m/2= 0.55 m

So the total area of the sphere is

A=4 \pi r^2 = 4 \pi (0.55 m)^2=3.8 m^2

And so, the inward force exerted on it is

F=pA=(1.08\cdot 10^8 Pa)(3.8 m^2)=4.1\cdot 10^8 N

8 0
2 years ago
Read 2 more answers
A 6.0-μF capacitor charged to 50 V and a 4.0-μF capacitor charged to 34 V are connected to each other, with the two positive pla
ch4aika [34]

Answer:

5702.88 J or 5.7mJ

Explanation:

Given that :

C 1 = 6.0-μF

C 2 = 4.0-μF

V 1 = 50V

V 2 = 34V

Note that : Q = CV

Q 1 = C1 * V1

Q 1 = 50×6 = 300μC

Q 2 = 34×4 = 136μC

Parallel connection = C 1 + C 2

= 6+4 = 10μC

V = Qt/C

Where Qt = Q1+Q2

V = Q1+Q2/C

V = 300+136/10

V = 437/10

V = 43.6volts

Uc1 = 1/2×C1V^2

= 1/2 × 6μF × 43.6^2

= 1/2 × 6μF × 1900.96

= 3μF × 1900.96volts

= 5702.88J

= 5702.88J/1000

= 5.7mJ

4 0
2 years ago
A camera gives a proper exposure when set to a shutter speed of 1/250 s at f-number F8.0. The photographer wants to change the s
Oksana_A [137]

Answer:

F4.0

Explanation:

To obtain a shutter speed of 1/1000 s to avoid any blur motion the f-number should be changed to F4.0 because the light intensity goes up by a factor of 2 when the f-number is decreased by the square root of 2.

5 0
2 years ago
What is the kinetic energy of a 26 kg eagle flying at an altitude of 65 m at a speed of 19 m/s?
sweet [91]

Answer:

4693 J

Explanation:

The kinetic energy of the eagle is given by:

K=\frac{1}{2}mv^2

where

m is the mass of the eagle

v is the speed of the eagle

In this problem, m = 26 kg and v = 19 m/s. Substituting into the formula, we find

K=\frac{1}{2}(26 kg)(19 m/s)^2=4693 J

As we can see, the altitude of the eagle is not relevant for the calculation of the kinetic energy.

4 0
2 years ago
An object is released from rest near and above Earth’s surface from a distance of 10m. After applying the appropriate kinematic
Damm [24]

Answer:

v_y = 12.54 m/s

Explanation:

Given:

- Initial vertical distance y_o = 10 m

- Initial velocity v_y,o  = 0 m/s

- The acceleration of object in air = a_y

- The actual time taken to reach ground t = 3.2 s

Find:

- Determine the actual speed of the object when it reaches the ground?

Solution:

- Use kinematic equation of motion to compute true value for acceleration of the ball as it reaches the ground:

                             y = y_o + v_y,o*t + 0.5*a_y*t^2

                             0 = 10 + 0 + 0.5*a_y*(3.2)^2

                             a_y = - 20 / (3.2)^2 = 1.953125 m/s^2

- Use the principle of conservation of total energy of system:

                             E_p - W_f = E_k

Where,                  E_p = m*g*y_o

                             W_f = m*a_y*(y_i - y_f)      ..... Effects of air resistance

                             E_k = 0.5*m*v_y^2

Hence,                  m*g*y_o - m*a_y*(y_i - y_f) = 0.5*m*v_y^2

                             g*(10) - (1.953125)*(10) = 0.5*v_y^2

                             v_y = sqrt (157.1375)

                            v_y = 12.54 m/s

4 0
2 years ago
Other questions:
  • The best way to cool soft and thick foods (such as beans, sauce or chili) when using the refrigerator is?
    11·2 answers
  • A flattened combination of matter containing stars, gas, and dust in spiral galaxy can be identified as
    6·2 answers
  • A jet engine gets its thrust by taking in air, heating and compressing it, and
    11·1 answer
  • The following times are given using metric prefixes on the base SI unit of time: the second. Rewrite them in scientific notation
    9·2 answers
  • Energy conservation with conservative forces: Two identical balls are thrown directly upward, ball A at speed v and ball B at sp
    7·1 answer
  • Technician A says that some ABS wheel speed sensors are used as part of the tire pressure monitoring system (TPMS) . Technician
    13·2 answers
  • A non-uniform rod 60cm long and weighs 32N is balanced at the 45cm mark. A load of 2N is hung on the zinc rod at the 25cm mark.
    11·1 answer
  • A reversible heat engine, operating in a cycle, withdraws thermal energy from a high-temperature reservoir (the temperature of w
    12·1 answer
  • A large semi-truck, with mass 31x crashes into a small sedan with mass x . If the semi-truck exerts a force F on the sedan, what
    13·1 answer
  • Which of these has the most kinetic energy
    5·2 answers
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!