answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Murljashka [212]
2 years ago
13

A stationary particle of charge q = 2.1 × 10-8 c is placed in a laser beam (an electromagnetic wave) whose intensity is 2.9 × 10

3 w/m2. determine the maximum magnitude of the (a) electric and (b) magnetic forces exerted on the charge. if the charge is moving at a speed of 3.7 × 104 m/s perpendicular to the magnetic field of the electromagnetic wave, find the maximum magnitudes of the (c) electric and (d) magnetic forces exerted on the particle.
Physics
1 answer:
alisha [4.7K]2 years ago
5 0
(a) The intensity of the electromagnetic wave is related to the amplitude of the electric field by
I= \frac{1}{2} c \epsilon_0 E^2
where
I is the intensity
c is the speed of light
\epsilon_0 is the electric permittivity
E is the amplitude of the electric field

By substituting the numbers of the problem and re-arranging the equation, we can find E:
E= \frac{2 I}{c \epsilon_0} = \frac{2 ( 2.9 \cdot 10^3 Wm^{-2})}{(3 \cdot 10^8 m/s)(8.85 \cdot 10^{-12} Fm^{-1})} =2.2 \cdot 10^6 N/C

Now that we have the intensity of the electric field, we can calculate the electric force on the charge:
F=qE=(2.1 \cdot 10^{-8} C)(2.2 \cdot 10^6 N/C)=0.046 N

(b) We can calculate the amplitude of the magnetic field starting from the amplitude of the electric field:
B= \frac{E}{c}= \frac{2.2 \cdot 10^6 N/C}{3 \cdot 10^8 m/s}=7.3 \cdot 10^{-3} T

The magnetic force is given by
F=qvB \sin \theta
where v is the particle's speed, B the magnetic field intensity and \theta the angle between B and v.
In this case the charge is stationary, so v=0, and so the magnetic force is zero: F=0.

(c) The electric force has not changed compared to point (a), because it does not depend on the speed of the particle, so we have again F=0.046 N.

(d) This time, the particle is moving with speed v=3.7 \cdot 10^4 m/s, in a direction perpendicular to the magnetic field (so, the angle \theta is 90^{\circ}), and so by using the intensity of the magnetic field we found in point (b), we can calculate the magnetic force on the particle:
F=qvB \sin \theta = (2.1 \cdot 10^{-8}C)(3.7 \cdot 10^4 m/s)(7.3 \cdot 10^{-3} T)(\sin 90^{\circ} )=
=5.7 \cdot 10^{-6} N
You might be interested in
The absolute pressure, in kilopascals, a depth 10m below sea level is most nearly?
saul85 [17]

Answer:

option A

Explanation:

given,

depth of the sea level = 10 m

g = 10 m/s²

Pressure underwater = ?

we know,

P = ρ g h

where ρ is the density of water which is equal to 1000 kg/m³

h is the depth of sea level

P = ρ g h

P = 1000 x 10 x 10

P = 100000 Pa

P = 100 kPa

Hence, the correct answer is option A

8 0
2 years ago
The human eye can respond to as little as 10^−18 J of light energy. For a wavelength at the peak of visual sensitivity, 550 nm,
Bumek [7]
<span>The key equation is going to come from Mr Planck: E=h \nu

Where h is Plancks constant; and ν is the frequency. This equation gives you the energy per photon at a given frequency. Alas, you're given wavelength, but that's easy enough to convert to frequency given the following equation:

c= lambda / nu

where c is the speed of light; λ (lambda) is the wavelength; and ν is again frequency. As soon as you know the energy of a photon with a wavelength of 550nm, you should know how many photons you would require to accumulate 10^-18J. Be careful with your units.</span>
7 0
2 years ago
Read 2 more answers
A student uses an electronic force sensor to study how much force the student’s finger can apply to a specific location. The stu
melisa1 [442]

Answer:

B. Trial 2

Explanation:

Trial 2, because the student’s finger applied the largest force to the sensor.

Because the trial 2 student finger applied to largest force.

7 0
2 years ago
Read 2 more answers
In a circus act, an acrobat rebounds upward from the surface of a trampoline at the exact moment that another acrobat, perched 9
slega [8]

Answer:

1.6 secs

Explanation:

In a circus act, an acrobat upwards from the surface of a trampoline

At that same moment another acrobat perched 9.0m above him

A ball is released from rest

While still in motion the acrobat catches the ball

He left the ball with a trampoline of 5.6m/s

Since the ball is falling downwards from a distance then acceleration will be negative

a= -9.8

s= d

s= 1/2at^2

= 1/2 × (-9.8)t^2

= 0.5× (-9.8)t^2

d = -4.9t^2

Therefore the time the acrobat stays in the air before catching the ball can be calculated as follows

9 - 4.9t^2= 5.6t + 1/2(-9.8)t^2

9 - 4.9t^2= 5.6t + (-4.9)t^2

9 - 4.9t^2= 5.6t - 4.9t^2

9= 5.6t

t= 9/5.6

t= 1.6 secs

6 0
2 years ago
A pitcher throws a 0.15 kg baseball so that it crosses home plate horizontally with a speed of 10 m/s. It is hit straight back a
Maru [420]

Answer:

-5.1 kg m/s

Explanation:

Impulse is the change in momentum.

Change in momentum= final momentum - initial momentum=mv_{2} +mv_{1}

Plugging in the values= -0.15*24 - (0.15*10) (The motion towards the pitcher is negative as the initial motion is considered to be positive)

Impulse=-5.1 kg m/s (-ve means that it is the impulse towards the pitcher)

4 0
2 years ago
Other questions:
  • The following represents a process used to assemble a chair with an upholstered seat. stationsa, b, and c make the seat; station
    14·1 answer
  • A novice pilot sets a plane’s controls, thinking the plane will fly at 2.50 × 102 km/h to the north. if the wind blows at 75 km/
    15·1 answer
  • A man is standing on a platform that is connected to a pulley arrangement, as the drawing shows. By pulling upward on the rope w
    9·1 answer
  • The angle between the axes of two polarizing filters is 45.0^\circ45.0 ​∘ ​​ . By how much does the second filter reduce the int
    10·1 answer
  • How do some businesses believe VR is affecting their training for employees?
    5·1 answer
  • A 0.500-kg ball traveling horizontally on a frictionless surface approaches a very massive stone at 20.0 m/s perpendicular to wa
    5·1 answer
  • You are using a lightweight rope to pull a sled along level ground. The sled weighs 485 N, the coefficient of kinetic friction b
    11·1 answer
  • An ore sample weighs 17.50 N in air. When the sample is suspended by a light cord and totally immersed in water, the tension in
    13·1 answer
  • To fully describe the photoelectric effect, scientists must consider which of
    9·1 answer
  • Devise and draw a circuit using a long, straight wire resistor, instead of a decade box, that would allow the study of the varia
    10·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!