answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Artemon [7]
2 years ago
10

A passenger bus is travelling 28.0 m/s to the right when the driver applies the brakes. The bus stops in 5.00 s. What is the acc

eleration of the bus as it comes to a stop?
Physics
2 answers:
zaharov [31]2 years ago
6 0

Answer:  - 5.60 m/s^2

Explanation:

Speed of passenger bus = 28.0 m/s to the right  

Time took for the bus stops = 5.00 s.

What is the acceleration of the bus as it comes to a stop = x

Step 1:

Calculate the change in velocity  

d = v2 (Final velocity)  - v1 (Initial Velocity)

d= 0 – 28

d= -28m/s  

Acceleration=  Change in velocity / time taken

Acceleration = -28 m/s / 5

Acceleration = - 5.60 m/s^2 to the right

Note: Do not forget the units, otherwise they make cost you marks!


MAVERICK [17]2 years ago
3 0
Change in velocity = d(v)
d(v) = v2 - v1 where v1 = initial speed, v2 = final speed
v1 = 28.0 m/s to the right
v2 = 0.00 m/s
d(v) = (0 - 28)m/s = -28 m/s to the right

Change in time = d(t)
d(t) = t2 - t1 where t1 = initial elapsed time, t2 = final elapsed time
t1 = 0.00 s
t2 = 5.00 s
d(t) = (5.00 - 0.00)s = 5.00s

Average acceleration = d(v) / d(t)
(-28.0 m/s) / (5.00 s)
(-28.0 m)/s * 1 / (5.00 s) = -5.60 m/s² to the right
You might be interested in
Draw the vector C⃗ =1.5A⃗ −3B⃗ . The length and orientation of the vector will be graded. The location of the vector is not impo
Nutka1998 [239]
I made the drawing in the attached file.

I included two figures.

The upper figure shows the effect of:

- multiplying vector A times 1.5.
 It is drawn in red with dotted line.

- multiplying vector B times - 3 .
It is drawn in purple with dotted line.

In the lower figure you have the resultant vector: C = 1.5A - 3B.

The method is that you translate the tail of the vector -3B unitl the point of the vector 1,5A, preserving the angles.

Then you draw the arrow that joins the tail of 1,5A with the point of -3B after translation.

The resultant arrow is the vector C and it is drawn in black dotted line.
 
Download pdf
7 0
2 years ago
Read 2 more answers
The electric potential in a particular region of space varies only as a function of y-position and is given by the function V(y)
nikdorinn [45]

Answer:

E = 55.9583\ Volts/meter

Explanation:

First let's find the electric potential using y = 22.5:

V(y) = 1.69y^2 +15.6y+52.5

V(22.5) = 1.69(22.5)^2 + 15.6*22.5 + 52.5

V(22.5) = 1259.0625\ Volts

Then, to find the magnitude of the electric field, we just need to divide the electric potential by the distance y:

E = V/d

E = 1259.0625/22.5

E = 55.9583\ Volts/meter

3 0
2 years ago
Imagine a small child whose legs are half as long as her parent’s legs. If her parent can walk at maximum speed V, at what maxim
AnnZ [28]

Answer:

\boxed{v=\frac {V}{\sqrt {2}}}

Explanation:

We know that speed is given by dividing distance by time or multiplying length and frequency. The speed of the father will be given by Lf where L is the length of the father’s leg ad f is the frequency.

We know that frequency of simple pendulum follows that f=\frac {1}{2\pi} \sqrt {\frac {g}{l}}

Now, the speed of the father will be V=Lf= L\times (\frac {1}{2\pi} \sqrt {\frac {g}{l}}) while for the child the speed will be v=\frac {L}{2}\times (\frac {1}{2\pi} \sqrt {\frac {g}{0.5l}})

The ratio of the father’s speed to the child’s speed will be

\frac {V}{v}=\frac {\frac {L}{2}\times (\frac {1}{2\pi} \sqrt {\frac {g}{0.5l}})}{ L\times (\frac {1}{2\pi} \sqrt {\frac {g}{l}})}\\\frac {V}{v}=\frac {\sqrt {2}}{2}\\\boxed{v=\frac {V}{\sqrt {2}}}

8 0
2 years ago
A pump lifts water from a lake to a large tank 20 m above the lake. How much work against gravity does the pump do as it transfe
Aleonysh [2.5K]

Answer:

980 kJ

Explanation:

Work = change in energy

W = mgh

W = (1000 kg/m³ × 5.0 m³) (9.8 m/s²) (20 m)

W = 980,000 J

W = 980 kJ

The pump does 980 kJ of work.

3 0
2 years ago
Read 2 more answers
A book rests on the shelf of a bookcase. The reaction force to the force of gravity acting on the book is 1. The force of the sh
Hoochie [10]

Answer:

1. The force of the shelf holding the book up.

Explanation:

The free body diagram of the book is as follows:

1 - The weight of the book towards downwards

2 - The normal force that the shelf exerts on the book towards upwards.

Since the book is at rest, these two forces are equal to each other and according to Newton's Third Law the reaction force to the force of gravity is equal but opposite to the weight of the book. This reaction force is the one that holds the book up on the shelf.

6 0
2 years ago
Read 2 more answers
Other questions:
  • A shopping cart slows as it moves along a level floor. Which statement describes the energies of the cart?
    8·1 answer
  • The wavelength of some red light is 700.5 nm. what is the frequency of this red light?
    15·1 answer
  • Will two separate 50db sounds together constitute a 100db sound explain mathematical
    13·1 answer
  • A trooper is moving due south along the freeway at a speed of 23 m/s. at time t = 0, a red car passes the trooper. the red car m
    12·2 answers
  • A very long, straight horizontal wire carries a current such that 8.15×1018 electrons per second pass any given point going from
    5·2 answers
  • Consider steady-state conditions for one-dimensional conduction in a plane wall having a thermal conductivity k = 50 W/m · K and
    7·1 answer
  • a 2.0 kg hoop rolls without slipping on a horizontal surface so that its center proceeds to the right with a constant linear spe
    7·1 answer
  • A black, totally absorbing piece of cardboard of area A = 1.7 cm2 intercepts light with an intensity of 8.1 W/m2 from a camera s
    11·2 answers
  • A molecule of ethanol has two carbon atoms, six hydrogen atoms, and one oxygen atom. A ball-and-stick model of a molecule of eth
    5·1 answer
  • Suppose we have a radar dish that generates a strong signal that travels out to hit an asteroid 10^9 kilometres away.
    14·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!