I made the drawing in the attached file.
I included two figures.
The upper figure shows the effect of:
- multiplying vector A times 1.5.
It is drawn in red with dotted line.
- multiplying vector B times - 3 .
It is drawn in purple with dotted line.
In the lower figure you have the resultant vector: C = 1.5A - 3B.
The method is that you translate the tail of the vector -3B unitl the point of the vector 1,5A, preserving the angles.
Then you draw the arrow that joins the tail of 1,5A with the point of -3B after translation.
The resultant arrow is the vector C and it is drawn in black dotted line.
Answer:

Explanation:
First let's find the electric potential using y = 22.5:



Then, to find the magnitude of the electric field, we just need to divide the electric potential by the distance y:



Answer:

Explanation:
We know that speed is given by dividing distance by time or multiplying length and frequency. The speed of the father will be given by Lf where L is the length of the father’s leg ad f is the frequency.
We know that frequency of simple pendulum follows that 
Now, the speed of the father will be
while for the child the speed will be 
The ratio of the father’s speed to the child’s speed will be

Answer:
980 kJ
Explanation:
Work = change in energy
W = mgh
W = (1000 kg/m³ × 5.0 m³) (9.8 m/s²) (20 m)
W = 980,000 J
W = 980 kJ
The pump does 980 kJ of work.
Answer:
1. The force of the shelf holding the book up.
Explanation:
The free body diagram of the book is as follows:
1 - The weight of the book towards downwards
2 - The normal force that the shelf exerts on the book towards upwards.
Since the book is at rest, these two forces are equal to each other and according to Newton's Third Law the reaction force to the force of gravity is equal but opposite to the weight of the book. This reaction force is the one that holds the book up on the shelf.